I.K. GUJRAL PUNJAB TECHNICAL UNIVERSITY

Scheme and Syllabus
of
Master of Technology

(Structural Design)
(Full Time)
SEMESTER I

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSD 101</td>
<td>Material Technology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 102</td>
<td>Advanced Structural Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 103</td>
<td>Pre-Stressed Concrete Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 104</td>
<td>Design of High Rise structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 105</td>
<td>Design of Bridges</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>250 500</td>
<td>750</td>
<td>20</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTSD 201</td>
<td>Structural Dynamic & Earthquake Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 202</td>
<td>Stability of Structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD 203</td>
<td>Advance Steel Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD</td>
<td>Elective I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>MTSD</td>
<td>Elective II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50 100</td>
<td>150</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>250 500</td>
<td>750</td>
<td>20</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTD 301</td>
<td>Elective III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>MSTD 302</td>
<td>Elective IV</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>MSTD 304</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>MSTD 305</td>
<td>Project</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
</tbody>
</table>

SEMESTER 4

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>Satisfactory/ Not Satisfactory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTD 401</td>
<td>Dissertation</td>
<td>Satisfactory/ Not Satisfactory</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

3
<table>
<thead>
<tr>
<th>Elective</th>
<th>Structural Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective I</td>
<td></td>
</tr>
<tr>
<td>MSTD 106</td>
<td>Composite Structures</td>
</tr>
<tr>
<td>MSTD 107</td>
<td>Design of plates and shells</td>
</tr>
<tr>
<td>MSTD 108</td>
<td>Material Science</td>
</tr>
<tr>
<td>Elective II</td>
<td></td>
</tr>
<tr>
<td>MSTD 204</td>
<td>Professional Practices</td>
</tr>
<tr>
<td>MSTD 205</td>
<td>Earth Retaining Structures</td>
</tr>
<tr>
<td>MSTD 206</td>
<td>Construction Failures</td>
</tr>
<tr>
<td>Elective III</td>
<td></td>
</tr>
<tr>
<td>MSTD 301</td>
<td>Repairs and Rehabilitation of Structures</td>
</tr>
<tr>
<td>MSTD 302</td>
<td>Design of Hydraulic system</td>
</tr>
<tr>
<td>MSTD 303</td>
<td>Advanced Reinforced Concrete Design</td>
</tr>
<tr>
<td>Elective IV</td>
<td></td>
</tr>
<tr>
<td>MSTD 306</td>
<td>Industrial Structure</td>
</tr>
<tr>
<td>MSTD 307</td>
<td>Advance Foundation Design and Geotechnics</td>
</tr>
<tr>
<td>MSTD -308</td>
<td>Dynamics of Structures</td>
</tr>
</tbody>
</table>

Statistical quality control; Bi axial strength of concrete, Fiber reinforced concrete.

Metals: Behavior of common constructional metals in tension and compression. True stress-strain curve for mild steel in simple tension. Theories of failure and yield surfaces.

Fatigue properties: Nature of fatigue failure, fatigue strength for completely reversed stresses, fatigue strength with super imposed static stress and factors influencing fatigue strength.

Temperature and Creep properties: Low temperature properties, high temperature properties, creep-stress-time-temperature relations for simple tension, mechanics of creep in tension.

Structure of materials and their imperfections. Deformation of crystals and theory of dislocations.

References Books:

3. S P Timoshenko, *Strength of materials- Part II*
4. M. S. Shetty, *Concrete technology- Theory & Practice*, S. Chand & Company New Delhi, 2005
MTSD -102 Advanced Structural Analysis

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Matrix Methods: Types of skeletal structures, internal forces and deformations.

Introduction and applications of flexibility method and stiffness method to analyze beams, trusses and plane frames. Domes: Uses of domes, types of domes, nature of stresses in conical and spherical domes, analysis of conical and spherical domes subjected to uniformly distributed load, concentrated load at crown, analysis of domes with opening.

Plastic Method: concept, assumptions, shape factor for different cross section, collapse load, load factor, plastic modulus of section, plastic moment of resistance, computation of collapse load for fixed beam, continuous beam and plane frame subjected to various load cases.

References Books:

3. Elements of Matrix and Stability Analysis of Structures by Manicka Selvam
5. Meghre & Deshmukh: Matrix Analysis of Structures, Charotar Publication
MTSD -103 Pre-Stressed Concrete Design

Introduction of pre-stressed concrete definition, comparison with reinforced concrete, advantages and disadvantages review (analysis) basic principles, determination of concrete flexural stresses, basic concept method, C- line method, load balancing method, classification of members, materials for pre-stressed concrete, high strength concrete short-term & long-term properties.

Pre-stressing Steel, steel relaxation and other effects, auxiliary materials, prestress losses, stresses in steel due to loads, Kem points, cracking moment, deflection under service conditions of loading and pre-stressing, determination of strength in bending, shear and bond.

Design preliminary considering no tension in concrete, elastic design allowing and considering tension, shapes of concrete sections, dimensioning and proportioning of section profile, shear design, bond, bearing and end block design, introduction of limit state method.

References Books:

4. Design of Prestressed Concrete by Gilbert & Mickleborough
5. N. Krishnaraju, Prestressed concrete, Tata McGraw-Hill, New Delhi-2004
1. Analysis of tall building frames, Lateral load analysis, multi bay frames, gravity loads settlement of foundation.

3. Perforated cores, pure torsion in thin tubes, bending of perforated cores.

4. Analysis of floor system in tall buildings, Vierendal girders, diagrid floors.

References Books:

Introduction: Classification, investigations and planning, choice of type, I.R.C. specifications for road bridges, standard live loads, other forces acting on bridges, general design considerations.

Short Span Bridges: Load distribution theories, analysis and design of slab culverts, tee beam and slab bridges.

Long Span Girder Bridges: Design principles of continuous bridges, box girder bridges, and balanced cantilever bridges.

References Books:

1. Introduction: definition, Classification and characteristics of Composite materials, advantages and limitations, Current Status and Future Prospects.

2. Basic concepts and characteristics: homogeneity and heterogeneity, isotropy, orthotropy and anisotropy; characteristics and configurations of lamina, laminate, micromechanics and macro mechanics, constituent materials and properties.

4. Strength of unidirectional lamina: Macro mechanical failure theories- Maximum stress theory, maximum strain theory, Deviatoric strain energy theory (Tsai-Hill), Interactive tensor polynomial theory (Tsai-Wu).

5. Elastic Behavior of multidirectional laminates: Basic assumptions, Stress-strain relations, load deformation relations, symmetric and balanced laminates, laminate engineering properties.

7. Recent advances: Functionally graded materials, Smart materials

References Books:

MTSD -107 Design of Plates & Shells

L T/P
3 1

Pure Bending of Plates: Slope & curvature of slightly bent plates, Relations between bending moments and curvature in pure bending of plates, Strain energy in pure ending of plates.

Symmetrical bending of circular plates: differential equation for symmetrical bending of laterally loaded circular plates, uniformly loaded circular plates, circular plates with circular hole at center, circular plate concentrically loaded ; small deflections of laterally loaded plates.

Differential equation of the deflection surface, Boundary conditions, simply supported rectangular plates under sinusoidal load, Navier solution for simply supported rectangular plates, Further applications of the Navier solution, Alternate solution for simply supported and uniformly loaded rectangular plates, Concentrated load on simply supported rectangular plates.

Classification of shell structures, importance of membrane theory of shells, shells in the form of a surface of revolution and loaded un-symmetrically with respect to their axes, spherical dome, conical shells, cylindrical shells, elliptic parabolic, hyperbolic parabola and cuboids ; general theory of cylindrical shells : circular cylindrical shell loaded symmetrically with respect to its axis, particular cases of symmetrical deformations of circular cylindrical shells, cylindrical tanks of uniform wall thickness. design of spherical domes with/without lanterns at top.

References Books:
Material classifications and important properties: Requirements and selection factors.
Structure of solid material: Crystalline, no crystalline, atomic bonding and generalized properties, crystal structure, crystal planes & directions, crystal imperfections, diffusion mechanism of solid and its application.

Structure, properties and control of multiphase solids: Solid solutions, home rathery's rules for alloys, system, phases and structural constituents, phase diagrams and transformation; heat treatment of steel and other alloys, effect of alloying elements on steel, case hardening and surface treatment
Ceramic materials: General structure and properties of ceramics, silicate glass, refractory, abrasives etc.
Organic materials: Polymer and polymerization, structure and properties of plastics, rubber etc.
Composite material: Component and types (dispersion reinforced, laminar reinforced fiber reinforced) and applications like Ferro cement, reinforced glass and polymer concrete.
Performance of material in service: Corrosion and oxidation, fracture and fatigue, performance under high temperature, radiation damages.

References Books:

1. Elementary Material Science-By Lawrence
2. Material Science and Metallurgy-By Khanna
3. Material Science-By R Gupta
4. Material Science-By J Patel
5. Concrete-By P.K. Mehta
MTSD -201 Earthquake Engineering & Design of Structures

L T/P
3 1

Engineering Seismology: Basic terms, seismic waves, earthquake magnitude and intensity, ground motion, dynamic response of structures, normalized response spectra, seismic coefficients and seismic zone coefficients.

Torsion & Rigidity: Rigid diaphragms, torsional moments, center of mass and center of rigidity, torsional effects.

Lateral Analysis of building system: lateral load distribution with rigid floor diaphragm, moment resisting frames, shear walls, and lateral shifting of shear walls, shear walls combinations.

Concepts of earthquake resisting design: objectives of seismic design, ductility and energy dissipation response modification factor, design spectrum, capacity design, classification of structural system, IS codal provision for seismic design of structure, multi storied buildings, design criteria, PΔ factors, storey drift, design examples, ductility detailing of RCC structure.

Seismic design of special structure: elevated liquid storage tank, hydrodynamic pressure in tank, stack like structure, IS -1893 codal provisions for bridges, super structures, sub structures, submersible structures and dams. Hydrodynamic effects due to reservoir, concrete gravity dams.

Seismic strengthening of Existing Buildings: Cased history-learning from earthquakes, seismic strengthening procedures.

Liquefaction: Causes of soil liquefaction, liquefaction potential, and measures to reduce liquefaction potential.

Seismic design of brick masonry construction: shear walls and cross walls opening in bearing walls, brick in fills in framed buildings, strengthening arrangements as per IS-4326, design of bands.

References Books:
MTSD - 202 Stability of Structures

Torsion of thin walled open sections, warping displacements under pure torsion,-
- Warping constants for rolled steel section. Strain energy in bending and torsion of
- members of thin walled open section including the effects of warping.

Torsional buckling including the effects of Wagner’s effect, flexural torsional buckling
- (with centroid and shear centers coincident); Lateral buckling of beams under pure
- bending central point load through Centre of gravity of the section.

Cantilever beams with point load at the free end, application of Rayleigh-Ritz method;
- Beam-columns on rigid supports-concentrated and continuous lateral loads with simply
- supported and built in-ends. Continuous beam with as axial loads.

Application of trigonometric series in plane buckling of bars; approximate calculation
- of critical loads for bar structures by energy method- a bar on elastic foundation, a bar
- with intermediate compressive forces, bar under distributed axial loads, a bar with
- changes in cross section.

Effects of shearing force on the critical load, buckling of built-up columns. In-elastic
- in-plane buckling of columns. Tangent and reduced modulus concept, elastic critical
- loads for rigid frames and triangulated structures, stability functions.

Bending of thin plate, buckling of thin rectangular plates in compression, shear and
- bending.

References Books:

5. F. Bleich, Buckling strength of Metal structures, Mc Graw Hill Book co., 1952
MTSD -203 Advanced Steel Design

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Design for tension and compression members, connections, design of plate girders, crane girders and trusses.

3. Design of steel tanks and staging.

5. Design of continuous beams and frames by plastic theory

References Books:

1. K. Mukhanov, *Design of Metal structures*.
2. B Bresler, T Y Lin and J B Scalzi, *Design of Steel structures*.
3. P Dayaratnam, *Design of Steel Structures*
1. Participants in design professionals, clients, structural design engineer, other consultants, architects, understanding their roles, responsibilities and interrelationship. Meaning of terms like site, project, contracts etc.

2. Codes of conducts for professionals: Handing approvals, procedures, office organization & structure.

3. Professional fees and accounting procedures, Tax planning, professional associations, social obligations.

4. History of professional associations, trends in professional practice.

References Books:

1. Estimation and Costing – S.C. Rangawala
2. Estimation and Costing (Civil Engineering) – B.N. Dutta
3. Civil Engineering Contracts and Estimates – B.S. Patil
MTSD -205 Earth Retaining Structures

L T/P

3 1

Earth Pressure: Fundamental relationships between the lateral pressures and the strain with a back fill. Rankine and Coulomb theories, active, passive and pressure at rest; Backfill with broken surface, wall with broken back, concentrated surcharge above the back fill, earth pressure due to uniform surcharge, earth pressure of stratified backfills, saturated and partially saturated backfill. Passive earth pressure in engineering practice.

Assumption and conditions, point of application of passive earth pressures.

Bulkheads: Definition and assumptions, conditions of end supports and distribution of active earth pressure and bulkheads, bulkheads with free and fixed earth supports, equivalent beam method, Improvements suggested by Row, Tschebotarioff’s method.

Anchorage of bulkheads and resistance of anchor walls, spacing between bulkheads and anchor walls, resistance of anchor plates, Consideration of effects of ground water, seepage, surcharge loading together with possibility of shallow and deep sliding failures on retaining structure.

Sheet Pile wall: Free earth system, fixed earth system.

Tunnel and Conduit: Stress distribution around tunnels, Types of conduits, Load on projecting conduits.

Arching and Open Cuts: Arching in soils, Braced excavations, Earth pressure against bracings in cuts, Heave of the bottom of cut in soft clays.

Reinforced earth retaining structures- Design of earth embankments and slopes; Recent advances in Earth retaining structures.

References Books:

3. P. Raj, Geotechnical Engineering, Tata McGraw Hill
4. R F Craig, Soil Mechanics, Chapman and Hall (ELBS)
Meaning of construction failure, historical references, main broad causes of failures such as design deficiency, use of improper materials and poor workmanship, removal of formwork at early stage, inadequate supervision and inspection, subsidence of foundations, fire, flood, earthquake, etc.

Factors affecting durability of concrete structures with emphasis on corrosion of reinforcement and codal provisions for design of durable concrete structures.

Cracks in concrete and masonry structures their reasons and measures to reduce or/and to avoid such cracks.

Professional & legal responsibility. Measures to reduce frequency and severity of constructions failures.

References Books:

1. Construction Failures by Jacob Feld.
3. Concrete Reinforced Concrete Deterioration & Protection Edited by V. Moskvin.
Investigation and Evaluation of Distressed Structures. Preliminary investigation, detailed investigation, documentation, field observation and condition survey, sampling and material testing, evaluation, final report.

Materials & Technologies for repair surface repair, material requirements, material selection, and surface preparation, reinforcing steel, cleaning, repair and protection, bonding repair materials to existing concrete, placement methods.

Strengthening and stabilization techniques/design considerations, beam shear capacity strengthening, shear transfer strengthening between members, stress reduction techniques, column strengthening, flexural strengthening, connections stabilization and strengthening, crack stabilization.

References Books:

1. Concrete Repairs & Maintenance by Peter H. Emmons & Gajanan M. Subnis.
2. Repair and Rehabilitation of Concrete Structures, ACI Compilation 10.
5. Strength Evaluation of Existing Concrete Buildings by ACI 437R-91
Objectives of hydraulic structures in Water resources systems, preliminary investigation and preparation of the reports, design of water storage structures ;
(1)High dams-gravity dams(zonal method design), over flow and non over flow section.(2) Low dams- weirs, earthen dams, vented dams (Barrage), instrumentation and maintenance of dam structures.

Collection and conveyance of water design of intakes, conveyance system of Irrigation, drinking and hydro power. Design of canal network.

Hydraulic design of pressure pipes, hydrostatic tests on pipes, design of distribution systems pressure in distribution systems, Nomo graphs, Hardy cross and numerical methods, computer aided design (CAD).

References Books:

2. Analysis and design of building frames subjected to wind load.

3. Earthquake forces and structural response.

4. Ductile detailing of RCC frames, design of beam-column joints.

5. Design of deep beam.

6. Design of shear walls.

References Books:

1. R. Park and T. Pauley, Reinforced concrete structures, John Wiley and sons
MTSD -304 Seminar

Every student requires to present a seminar talk on a topic approved by the department except on his/her dissertation & submit the report to the department. The committee constituted by the Head of the department will evaluates the presentation and will award the marks. Student who is awarded with ‘F’ grade will be required to repeat the seminar on the same topic.

MTSD -305 Minor Project

Every student will carry out project under the supervision of a supervisor(s). The topic shall be approved by a Committee constituted by the Head of the concerned department. Every student will be required to present two seminar talks, first at the beginning of the project to present the scope of the work to finalize the topic, and second at the end of the semester, presenting the work carried out by him/her in the semester. The committee constituted will screen both the presentations to award the sessional grades out of A+, A, B, C, D E and F. Student scoring ‘F’ grade shall have to improve this grade before continuing his/her Dissertation in the 4th semester failing which he/she shall have to repeat the project next time in the regular 3rd semester.
Role of Design engineer, properties of structural steel, merits and demerits of structural steel over reinforced concrete structures.

Steel Structure Design: Design of tension members, compression members, and flexure members and beam-columns junctions, adopting codal provisions of IS: 800 components & its terminology, load estimation, choice of sections, analysis and design for gantry girders.

Industrial structures with steel trusses and portal frames. Typical configuration with various elements, load assessment (dead load, live load, wind load and earthquake load).

Different roofing and cladding alternatives and their design, types of purlins and their design, analysis and design of a trusses and portal frames, design of base plate, pedestal and footing considering both hinged and fixed support conditions, design of bracing and preparation of construction drawings.

Welded Connections: Advantages of welding, fundamentals and methods of welding, types of joints, welding symbols, inspection of welding, codal provisions, and design of typical welded connections. Bolted connections, Types of bolts, codal provisions, design of typical bolted connections.

References Books:

1. Design of Steel Structures - by Bresler & Lin.
2. Theory of Modern Steel Structures - by Linton Grinter.
3. Design of Steel Structures - by P. Dayaratnam.
4. Reinforced Concrete Structural Elements (behavior, analysis & design) by P. Purushothaman.
5. Practical Design of Reinforced Concrete by Russell S. Fling.
6. Design of Reinforced Concrete Structures by Ashok Kumar Gupta.
MTSD -307 Advanced Foundation Design and Geotechnics

Geotechnics: Review of index properties and soil classification, site investigations, foundation settlement, bearing capacity of foundations, excavations & earth retaining structures, earth structures, design of shallow and deep foundations, ground modification - improvement & land, reclamation geo environmental engineering.

Shallow Foundation: Terzaghi’s bearing capacity equation, general bearing capacity equation, Balla's & Meyerhoff’s theory, effect of water table, special footing problems, I.S. Code, Footing pressure for settlement on sand, soil pressure at a depth, Boussinesq’s & Westergaard methods, computation of settlements (immediate & consolidation) permissible settlements, proportioning of footing, inclined & eccentric loads.

Pile Foundation: Timber, concrete, steel piles, estimating pile capacity by dynamic formula, by wave equation & by static methods, point bearing piles, pile loads tests, negative skin friction, modulus of subgrade reaction for laterally loaded piles, lateral resistance.

Single pile v/s pile groups, pile group consideration, efficiency, stresses on underlying strata, settlement of pile group, pile caps, batter piles, approximate and exact analysis of pile groups, I.S code.

Well foundation: Types (open end & closed or box, pneumatic, drilled) shapes, bearing capacity and settlements, determination of grip length by dimensional analysis, design of well foundation construction, tilts & shifts.

Machine Foundations: Types, analysis and design by Barkens methods, determination of coefficient of uniform elastic compression, Pauw's analogy and design of a block type M/C foundation, I.S.I method of design, Co- vibrating soil mass.

Sheet Pile Structure: Types, Cantilever, Anchored sheet pilling, Design by Fixed earth Method and modifications by Anderson & Techabotarioff, Anchor Braced sheeting cofferdam, Single well cofferdams, cellular cofferdam, stability of cellular cofferdam, instability due to heave of bottom.

References Books:
1. Foundation Engineering by Pack, Hansen and Thornburn
2. Foundation Design Manual by Winterkorn and Feng
3. Foundation Analysis and Design
4. Geotechnical Engineering by Venkatramaiyah
5. Soil Mechanics and Foundation Engineering by Alamsingh
MTSD -308 DYNAMICS OF STRUCTURES

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

References:

1. Dynamics of Structures by Clough and Penzien
2. Mechanical Vibrations by G.K. Grover
3. Dynamics of Structures by Walter C. Hurty & Moshe F. Rubinstein
MTSD - 401 Dissertation

The Dissertation Phase-1 will be continued as dissertation in 4th Semester. The award of sessional grades out of A+, A, B, C, D and E will be done by an internal committee constituted by the Head of the Dept. This assessment shall be based on presentation (s), report, etc. before this committee. In case a student scores ‘F’ –grade in the sessional, failing which he/ she will not be allowed to submit the dissertation. At the end of the semester, every student will be required to submit three bound copies of his/her Master’s dissertation at the office of the concerned department. Out of these, one copy will be kept for department record & one copy shall be for the supervisor. A copy of the dissertation will be sent to the external examiner by mail by the concerned Department, after his/her appointment and intimation from the university. Dissertation will be evaluated by a committee of examiners consisting of the Head of the Department, dissertation Supervisor and one external examiner. There shall be no requirement of a separate evaluation Report on the Master Dissertation from the external examiner. The external examiner shall be appointed by the University from a panel of examiners submitted by the respective Head of Dept., to the Chairman, Board of Studies. In case the external examiner so appointed by the University does not turn up, the Director/ Principal of the concerned college, on the recommendation of the concerned Head of the Dept. shall be authorized, on behalf of the University to appoint an external examiner from some other institution. The student will defend his/her dissertation through presentation before this committee and the committee will award one of the grades out of A+, A, B, C, D E and F. Student scoring ‘F’ grade in the exam shall have to resubmit his /her Dissertation after making all correction / improvements and this Dissertation shall be evaluated as above.

Note: The Scheme of awarding the Grades to the student in the course will be supplied by the University to the examiner(s).