Scheme & Syllabus of

Master of Technology
Thermal Engineering

Batch 2018 onwards

By
Board of Study- ME

Department of Academics
I.K. Gujral Punjab Technical University
PROGRAM: Master of Technology in Thermal Engineering

It is a Post Graduate (PG) Programme of 2 years duration (4 semesters)

Courses & Examination Scheme:

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Load allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTE 101-18</td>
<td>Program Core I</td>
<td>Thermodynamics and Combustion</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTTE 102-18</td>
<td>Program Core II</td>
<td>Advanced Fluid Dynamics</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTTE 105-18</td>
<td>Program Elective I</td>
<td>Nuclear Engineering</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTTE 106-18</td>
<td>Program Elective II</td>
<td>Energy Conservation and Management</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTTE 107-18</td>
<td>Program Elective II</td>
<td>Air Conditioning System Design</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTTE 108-18</td>
<td>Program Elective II</td>
<td>Gas Turbines</td>
<td>L 3 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTRM 101-18</td>
<td>Core</td>
<td>Research Methodology and IPR</td>
<td>L 2 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTAC-XXX</td>
<td>Audit Course **</td>
<td>Audit Course - 1</td>
<td>L 2 T 0 P 0</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTTE 103-18</td>
<td>Core</td>
<td>Thermal Engineering Lab Practice-I</td>
<td>L 0 T 0 P 4</td>
<td>60 Internal 40 External</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTTE 104-18</td>
<td>Core</td>
<td>Thermal Engineering Lab Practice-II</td>
<td>L 0 T 0 P 4</td>
<td>60 Internal 40 External</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>L 16 T 0 P 8</td>
<td>320 Internal 380 External</td>
<td>700</td>
<td>18</td>
</tr>
</tbody>
</table>
Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Load allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTE 201-18</td>
<td>Program Core III</td>
<td>Advanced Heat Transfer</td>
<td>3 0 0</td>
<td>40 60 100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MTTE 202-18</td>
<td>Program Core IV</td>
<td>Steam Engineering</td>
<td>3 0 0</td>
<td>40 60 100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MTTE 206-18</td>
<td>Program Elective III</td>
<td>Refrigeration and cryogenics</td>
<td>3 0 0</td>
<td>40 60 100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MTTE 207-18</td>
<td>Program Elective IV</td>
<td>Design of Heat Exchangers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTTE 208-18</td>
<td>Program Elective IV</td>
<td>Computational Fluid Dynamics</td>
<td>3 0 0</td>
<td>40 60 100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MTTE 209-18</td>
<td>Program Elective IV</td>
<td>Modelling of IC Engines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTAC-XXX</td>
<td>Audit Course**</td>
<td>Audit- 2</td>
<td>2 0 0</td>
<td>0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTTE 203-18</td>
<td>Core</td>
<td>Thermal Engineering Lab Practice-III</td>
<td>0 0 4</td>
<td>60 40 100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MTTE 204-18</td>
<td>Core</td>
<td>Thermal Engineering Lab Practice-IV</td>
<td>0 0 4</td>
<td>60 40 100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MTTE 205-18</td>
<td>Core</td>
<td>Mini Project</td>
<td>0 0 4</td>
<td>60 40 100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>14 0 12</td>
<td>340 360 700</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Load allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTE 302-18</td>
<td>Program Elective V</td>
<td>Design of Solar and Wind System</td>
<td>3 L 0 T 0 P</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>03</td>
</tr>
<tr>
<td>MTTE 303-18</td>
<td></td>
<td>Advanced Mathematical Methods in Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTOE 301-18</td>
<td>Open Elective</td>
<td>Business Analytics</td>
<td>3 L 0 T 0 P</td>
<td>40 Internal 60 External</td>
<td>100</td>
<td>03</td>
</tr>
<tr>
<td>MTOE 302-18</td>
<td></td>
<td>Industrial Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTOE 303-18</td>
<td></td>
<td>Operations Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTOE 304-18</td>
<td></td>
<td>Cost Management of Engineering Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTOE 305-18</td>
<td></td>
<td>Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTOE 306-18</td>
<td></td>
<td>Waste to Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTTE 301-18</td>
<td>Dissertation</td>
<td>Dissertation Phase – I</td>
<td>0 L 0 T 20 P</td>
<td>60 Internal 40 External</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>6 L 0 T 20 P</td>
<td>140 Internal 160 External</td>
<td>300</td>
<td>16</td>
</tr>
</tbody>
</table>
Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Load allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTTE 401-18</td>
<td>Dissertation</td>
<td>Dissertation Phase – II</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>S/US 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Marks of M. Tech Program: 1700 Total Credit of M. Tech Program: 68

Audit courses 1 & 2:

COURSE CODE: MTAC-XXX

- A01. English for Research Paper Writing
- A02. Disaster Management
- A03. Sanskrit for Technical Knowledge
- A04. Value Education
- A05. Constitution of India
- A06. Pedagogy Studies
- A07. Stress Management by Yoga
- A08. Personality Development through Life Enlightenment Skills.
Thermodynamics and Combustion

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes:

At the end of the course:

1. Student will get Knowledge of exergy, basic laws governing energy conversion in multi-component systems and application of chemical thermodynamics. Student will be aware about advanced concepts in thermodynamics with emphasis on thermodynamic relations, equilibrium and stability of multiphase multi-component systems.
2. Student will be aware about the molecular basis of thermodynamics.
3. To present theoretical, semi-theoretical and empirical models for the prediction of thermodynamic properties.
4. Student will be acquire the confidence in analyze the motion of combusting and non-combusting fluids whilst accounting for variable specific heats, non-ideal gas properties, chemical non-equilibrium and compressibility.
5. Student should apply the fundamental principles of thermodynamics to non-ideal models of numerous engineering devices.
6. Student can use a systems approach to simplify a complex problem.

Syllabus Contents:

- First law and State postulates, Second law and Entropy, Availability and Irreversibility, Transient flow analysis
- Nonreactive Ideal-Gas Mixture, PvT Behavior of Real gases and Real Gas mixture
- Generalized Thermodynamic Relationship
- Combustion and Thermo-chemistry, Second law analysis of reacting mixture, Availability analysis of reacting mixture, Chemical equilibrium
- Statistical thermodynamics, statistical interpretations of first and second law and Entropy,
- Third law of thermodynamics, Nerst heat theorem.

References:

Advanced Fluid Dynamics

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. The Students shall be able to understand and define the fluid flow problems along with range of governing parameters
2. The student shall be eligible to take up the fluid flow problems of industrial base.
3. The students shall be able to devise the experiments in the field of fluid mechanics.
4. The Students shall be able understand the flow patterns and differentiate between the flow regimes and its effects.

Syllabus Contents:

- Governing equations in Fluid Dynamics: Derivation of Continuity and Momentum equations using integral and differential approach, dimensionless form of governing equations, special forms of governing equations, integral quantities
- Exact Solutions of Navier-Stokes Equations: Fully developed flows, parallel flow in straight channel, Couette flow, Creeping flows
- Potential Flow: Kelvin's theorem, Irrotational flow, Stream function-vorticity approach,
- Laminar Boundary layers: Boundary layer equations, flow over flat plate, Momentum integral equation for boundary layer, approximate solution methodology for boundary layer equations
- Turbulent Flow: Characteristics of turbulent flow, laminar turbulent transition, time mean motion and fluctuations, derivation of governing equations for turbulent flow, shear stress models, universal velocity distribution
- Experimental Techniques: Role of experiments in fluid, layout of fluid flow experiments, sources of error in experiments, data analysis, design of experiments, review of probes and transducers, Introduction to Hot wire Anemometry, Laser Doppler Velocimetry and Particle Image Velocimetry

References:

Nuclear Engineering

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes:

At the end of the course:
1. Student will understand the basic concepts and processes taking place inside a nuclear reactor, such as nuclear fission, neutron production, scattering, diffusion, slowing down and absorption.
2. The student will also be familiar with concepts of reactor criticality, the relationship between the dimension and fissile material concentration in a critical geometry.
3. The student will also be familiar with Time dependent (transient) behaviour of power reactor in non-steady state operation and the means to control the reactor.
4. The student will also be familiar with concepts of heat removal from reactor core, reactor safety and radiation protection.

Syllabus Contents:

- **Basics of nuclear fission and power from fission**
 Radioactivity, nuclear reactions, cross sections, nuclear fission, power from fission, conversion and breeding
- **Neutron transport and diffusion**
 Neutron transport equation, diffusion theory approximation, Fick’s law, solutions to diffusion equation for point source, planar source, etc., energy loss in elastic collisions, neutron slowing down
- **Multigroup, multiregion diffusion equation, concept of criticality**
 Solution of multigroup diffusion equations in one region and multiregion reactors, concept of criticality of thermal reactors
- **Reactor kinetics and control**
 Derivation of point kinetics equations, inhour equation, solutions for simple cases of reactivity additions, fission product poison, reactivity coefficients
- **Heat removal from reactor core**
 Solution of heat transfer equation in reactor core, temperature distribution, critical heat flux
- **Reactor safety, radiation protection**
 Reactor safety philosophy, defence in depth, units of radioactivity exposure, radiation protection standards

References:

2. Introduction to Nuclear Reactor Theory, by John R. Lamarsh, Addison-Wesley, (1966)
Energy Conservation and Management

Teaching Scheme

Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. The student should acquire insight about the importance of energy
2. The student should capable to analyze all scenarios from energy consumption
3. The student should generate scenarios of energy consumption and predict the future trend
4. The student should Suggest and plan energy conservation solutions

Syllabus Contents:

- The energy market, energy scenario, planning, utilization pattern and future strategy, Importance of energy management.
- Energy auditing - methodology and analysis,
- Energy economics,
- Energy conservation in industries, Cogeneration, Combined heating and power systems,
- Relevant international standards and laws.

References:

2. Callaghan “Energy Conservation”.
9. TERI Publications.
Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Student should understand construction and design features of air-conditioning systems.
2. Student should understand various types and their adoptability in various environments and application areas.
3. Student should understand various health issues.
4. Student should design seasonal energy-efficient systems.

Syllabus Contents:
- Air conditioning systems,
- Various air-conditioning processes,
- Enthalpy deviation curve, psychrometry, SHF, dehumidified air quantity, human comfort,
- Indoor air quality,
- Design conditions and load calculations, air distribution, pressure drop, duct design, fans & blowers,
- Performance & selection, noise control.

References:
1. ASHRAE Handbook.
Gas Turbines

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Student should understand construction and design features of gas turbines as used for power generation.
2. Student should understand thermodynamics cycles a, and different sizes and layouts of gas turbine plant
3. Able to understand thermodynamics and fluid mechanics component for enhancing the efficiency and effectively of gas turbines

Syllabus Contents:
- Introduction, Cycles, Performance characteristics and improvement,
- Gas dynamics, Centrifugal, axial and mixed flow compressor, principles and characteristics, Turbine construction, Blade materials, manufacturing techniques, blade fixing,
- Problems of high temperature operation, blade cooling, practical air cooled blades Combustion Systems, various fuels and fuel systems,
- Jet propulsion cycles and their analysis, parameters affecting performance, thrust augmentation, environmental considerations and applications.

References:
Research Methodology and IPR

Teaching Scheme
Lectures: 2 hrs/week

Course Outcomes:
At the end of this course, students will be able to
1. Understand research problem formulation.
2. Analyze research related information
3. Follow research ethics
4. Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Syllabus Contents:
Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations
Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics,
Unit 3: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

References:
- Stuart Melville and Wayne Goddard, “Research methodology: an introduction for science & engineering students”
- Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
Advanced Heat Transfer

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:

The students are expected to understand the subject of Heat Transfer in detail with capability to solve Industrial Problems. This will also create the base and interest among the students to carry out the Future Research

Syllabus Contents:
- Conduction- one and two dimensional,
- Fins, conduction with heat source, unsteady state heat transfer,
- Natural and forced convection, integral equation, analysis and analogies,
- Transpiration cooling, ablation heat transfer, boiling, condensation and two phase flow mass transfer, cooling, fluidized bed combustion,
- Heat pipes, Radiation, shape factor, analogy, shields,
- Radiation of gases & vapours.

References:
Steam Engineering

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Students will have the ability to explain working of different boilers and significance of mountings and accessories.
2. Students will have the ability to use techniques, skills, and modern engineering tools necessary for boiler performance assessment.
3. Students will have a theoretical and practical background in thermal systems and will have a good understanding of energy conservation fundamentals. Students will have the ability to analyze thermal systems for energy conservation.
4. Students will have the ability to design a steam piping system, its components for a process and also design economical and effective insulation.
5. Students will have the ability to analyze a thermal system for sources of waste heat and design a system for waste heat recovery.
6. Students will have the ability to design and develop controls and instrumentation for effective monitoring of the process.

Syllabus Contents:
- **Introduction (7 hrs)**
 Fundamentals of steam generation, Quality of steam, Use of steam table, Mollier Chart Boilers, Types, Mountings and Accessories, Combustion in boilers, Determination of adiabatic flame temperature, quantity of flue gases, Feed Water and its quality, Blow down; IBR, Boiler standards
- **Piping & Insulation (8 hrs)**
 Water Line, Steam line design and insulation; Insulation-types and application, Economic thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application of refractory, Heat loss.
- **Steam Systems (8 hrs)**
 Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Steam Engineering Practices; Steam Based Equipments / Systems.
- **Boiler Performance Assessment (8hrs)**
 Performance Test codes and procedure, Boiler Efficiency, Analysis of losses; performance evaluation of accessories; factors affecting boiler performance.
- **Energy Conservation and Waste Minimization, (5hrs)**
 Energy conservation options in Boiler; waste minimization, methodology; economical viability of waste minimization
- **Instrumentation & Control (6hrs)**
 Process instrumentation; control and monitoring. Flow, pressure and temperature measuring and controlling instruments, its selection
References:
1. T. D. Estop, A. McConkey, Applied Thermodynamics, Parson Publication
2. Domkundwar; A Course in Power Plant Engineering; Dhanapat Rai and Sons
6. Edited by J. B. Kitto & S C Stultz; Steam: Its Generation and Use; The Babcock and Wilcox Company
7. P. Chatopadhyay; Boiler Operation Engineering: Questions and Answers; Tata McGrawHill Education Pvt Ltd, N Delhi
Refrigeration and Cryogenics

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course, students will demonstrate the ability:
1. To learn the basics of refrigeration and cryogenics and its application area.
2. To design the refrigeration systems for domestic and industrial applications like cold storages
3. To learn about ODP, GWP and related environment issues.

Syllabus Contents:
- Vapour compression refrigeration, actual cycle, second law efficiency,
- Multistage compression with inter-cooling, Multi-evaporator systems, Cascade systems,
- Performance characteristics and capacity control of reciprocating and centrifugal compressors, screw compressor and scroll compressor,
- Design, selection of evaporators, condensers, control systems, motor selection,
- Refrigerants, alternative refrigerants, CFC/HCFC phase-out regulations,
- Refrigeration applications, food preservation, transport,
- Introduction to Vapor absorption refrigeration, single effect and double effect systems,
- Gas liquefaction systems - Linde-Hampson, Linde dual pressure, Claude cycle.

References:
Design of Heat Exchangers

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Students will demonstrate a basic understanding of several types of heat exchangers that will include shell-and-tube, double pipe, plate-and-frame, finned tube, and plate-fin heat exchangers, Heat pipes.
2. Students will design and analyses of shell-and-tube double pipe, compact, plate heat exchangers.
3. Students will demonstrate the performance degradation of heat exchangers subject to fouling.

Syllabus Contents:
- Heat Exchangers – Classification according to transfer process, number of fluids, surface compactness, and construction features. Tubular heat exchanger, plate type heat exchangers, extended surface heat exchangers, heat pipe, Regenerators. Classification according to flow arrangement: counter flow, parallel flow, cross flow exchanger.
- Heat exchanger design methodology, assumption for heat transfer analysis, problem formulation, e-NTU method, P-NTU method, Mean temperature difference method, fouling of heat exchanger, effects of fouling, categories of fouling, fundamental processes of fouling.
- Double Pipe Heat Exchangers: Thermal and Hydraulic design of inner tube, Thermal and hydraulic analysis of Annulus, Total pressure drop
- Compact Heat Exchangers: Thermal and Hydraulic design of compact heat exchanger
- Shell and Tube heat exchangers – Tinker’s, kern’s, and Bell Delaware’s methods, for thermal and hydraulic design of Shell and Tube heat exchangers
- Mechanical Design of Heat Exchangers – design standards and codes, key terms in heat exchanger design, material selection, and thickness calculation for major components such as tube sheet, shell, tubes, flanges and nozzles. Introduction to simulation and optimization of heat exchangers, flow induced vibrations.

References:
5. Afgan N. and Schlinder E.V. “Heat Exchanger Design and Theory Source Book”.
Computational Fluid Dynamics

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
The students are expected to understand the subject of Computational Fluid Dynamics and know how to use it as tool to solve the Heat Transfer and Fluid Mechanics related Industrial Problems. This will also create the base and interest among the students to carry out the Future Research.

Syllabus Contents:
- **Introduction to CFD:** Computational approach to Fluid Dynamics and its comparison with experimental and analytical methods, Basics of PDE: Elliptic, Parabolic and Hyperbolic Equations.
- **Governing Equations:** Review of Navier-Stokes Equation and simplified forms, Solution Methodology: FDM and FVM with special emphasis on FVM, Stability, Convergence and Accuracy.
- **Finite Volume Method:** Domain discretization, types of mesh and quality of mesh, SIMPLE, pressure velocity coupling, Checkerboard pressure field and staggered grid approach
- **Geometry Modeling and Grid Generation:** Practical aspects of computational modelling of flow domains, Grid Generation, Types of mesh and selection criteria, Mesh quality, Key parameters and their importance
- **Methodology of CFDHT:** Objectives and importance of CFDHT, CFDHT for Diffusion Equation, Convection Equation and Convection-Diffusion Equation

References:
3. An Introduction to Computational Fluid Flow (Finite Volume Method), by H.K. Versteeg, W. Malalasekera, Printice Hall
Modelling of IC Engine

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Students will demonstrate a basic understanding of several types of engine models that will include zero dimensional thermodynamic model, one dimensional and multi-dimensional, single zone, two zone etc models.
2. Students will develop models and simulate them for diesel engine petrol engine, gas engine.
3. Students will demonstrate the performance evaluation and emission standards for such modeled engines

Syllabus Contents:
• **Fundamentals**: Governing equations, Equilibrium charts of combustion chemistry, chemical reaction rates, and approaches of modeling, model building and integration methods, gas exchange through valves, engine and porting geometry, exhaust gas recirculation, valve lift curves.
• **Thermodynamic Combustion Models of CI Engines**: Single zone models, premixed and diffusive combustion models, combustion heat release using wiebe function, wall heat transfer correlations, ignition delay, internal energy estimations, two zone model, application of heat release analysis.
• **Fuel spray behavior**: Fuel injection, spray structure, fuel atomization, droplet turbulence interactions, droplet impingement on walls.
• **Modeling of charging system**: Constant pressure and pulse turbo charging, compressor and turbine maps, charge air cooler.
• **Mathematical models of SI Engines**: Simulation of Otto cycle at full throttle, part throttle and supercharged conditions. Progressive combustion, Autoignition modeling, single zone models, mass burning rate estimation, SI Engine with stratified charge. Friction in pumping, piston assembly, bearings and valve train etc. friction estimation for warm and warm up engines.

References:
Design of Solar and Wind Systems

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course:
1. Student should update about the technological status of implementation of NCES in India
2. Student should capable to analyze various techno economical obstacles in the commercial development of NCES in India
3. Student should capable to conceptually model and design general NCES systems and predict the long term performance.
4. Student should suggest and plan hybrid NCES solutions to conventional energy systems

Syllabus Contents:
• Conventional sources of energy, Nuclear, Alternative energy sources,
• Solar Radiation-estimation, prediction & measurement, Solar energy utilization,
• Performance of Solar flat plate collectors, concentrating collectors, thermal storage,
• Wind energy, Direct Energy conversion- PV, MHD,
• Fuel cells, thermionic, thermoelectric, Biomass, biogas, hydrogen, Geothermal.

References:
3. Bansal and others, “Non-Conventional Energy Sources”.
Advanced Mathematical Methods in Engineering

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Students will be able to analyse and develop the mathematical model of thermal system.
2. Student should able analyse the reliability and maintainability of the series and parallel thermal system.
3. Students will be able to solve differential equations using numerical techniques

Syllabus Contents:
- Ordinary Differential Equations: First-order equations (Linear, Equidimensional, Separable Exact, Homogeneous,); Second-order linear differential equations (homegeneous and nonhomogeneous); Solution methods such as undertermined coefficients and variation of parameters.
- Partial Differential Equations: First order partial differential equations; Second order linear partial differential equations; Canonical forms; Fourier series, Second order equation (Parabolic, Elliptic and Hyperbolic) in rectangular, cylindrical polar and spherical coordinate systems; Solution techniques such as separation of variables, eigenfunction expansions, integral transforms (Fourier and Laplace transforms); D'Alembert's solution for the Wave equation; Maximum principle for Elliptic equations; Variational methods for approximate solutions of differential equations.
- Standard discrete and continuous distributions like Binomial, Poisson, Normal, Exponential etc. Central Limit Theorem and its significance. Some sampling distributions like c2, t, F.
- ANOVA: One – way, Two – way with/without interactions, Latin Squares ANOVA technique, Principles of Design Of Experiments, some standard designs such as CRD, RBD, LSD.
- Some of the relevant topics required for ANOVA (sample estimates and test hypothesis) may also be included.

References:
Mini project

Teaching Scheme
Practical: 4 hrs/week

Course Outcomes:
At the end of the course:
1. Students will get an opportunity to work in actual industrial environment if they opt for internship.
2. In case of mini project, they will solve a live problem using software/analytical/computational tools.
3. Students will learn to write technical reports.
4. Students will develop skills to present and defend their work in front of technically qualified audience

Syllabus Contents:
- Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.
Thermal Engineering Lab Practice – I and II

Teaching Scheme
Practical: 4 hrs/week

Course Outcomes:
At the end of the course:
1. Students will acquire hands on experience on the various test-rigs, Experimental set up.
2. Students should able to measure the various technical parameters by instrument and by mathematical relationship.
3. Students will able to identify the effect of various parameters on the system and able to correlate them.

Syllabus Contents:
- The lab practice consists of the tutorials and experiments as decided by the course supervisors of the Program Core Courses (PCC) namely Fluid Dynamics, Advanced Heat Transfer, Thermodynamics and Combustion, Refrigeration and Cryogenics

Lab Practice III and IV - Thermal Engineering

Teaching Scheme
Practical: 4 hrs/week

Course Outcomes:
At the end of the course:
1. Students will acquire hands on experience on the various test-rigs, Experimental set up.
2. Students should able to measure the various technical parameters by instrument and by mathematical relationship.
3. Students will able to identify the effect of various parameters on the system and able to correlate them.

Syllabus Contents:
- The lab practice consists of the tutorials and experiments as decided by the course supervisors of the Program Core Courses (PCC) namely Design of Heat Exchangers and Computational Fluid Dynamics, Modelling of I C Engine.
Teaching Scheme
Practical: 20 hr/week

Course Outcomes:
At the end of the course:
1. Students will be exposed to self-learning various topics.
2. Students will learn to survey the literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.
3. Students will learn to write technical reports.
4. Students will develop oral and written communication skills to present and defend their work in front of technically qualified audience.

Guidelines:
The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.
Dissertation Phase- II

Teaching Scheme
Practical: 32 hr/week

Course Outcomes:
At the end of the course:
1. Students will be able to use different experimental techniques.
2. Students will be able to use different software/computational/analytical tools.
3. Students will be able to design and develop an experimental set up/equipment/test rig.
4. Students will be able to conduct tests on existing set ups/equipments and draw logical conclusions from the results after analyzing them.
5. Students will be able to either work in a research environment or in an industrial environment.
6. Students will be conversant with technical report writing.
7. Students will be able to present and convince their topic of study to the engineering community.

Guidelines:
It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.
OPEN ELECTIVES

Business Analytics
Industrial Safety

Teaching scheme
Lecture: - 3 h/week

Course objective
1. Understand the role of business analytics within an organization.
2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
4. To become familiar with processes needed to develop, report, and analyze business data.
5. Use decision-making tools/Operations research techniques.
7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

Unit 1:

Unit 2:

Unit 3:
Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit 4:

Unit 5:

Unit 6:
Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.
COURSE OUTCOMES
1. Students will demonstrate knowledge of data analytics.
2. Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
3. Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
4. Students will demonstrate the ability to translate data into clear, actionable insights.

Reference:
2. Business Analytics by James Evans, persons Education.
Teaching scheme
Lecture: - 3 h/week

Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Unit-V: Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Reference:
Operations Research

Teaching Scheme
Lectures: 3 hrs/week

Course Outcomes: At the end of the course, the student should be able to
1. Students should be able to apply the dynamic programming to solve problems of discreet and continuous variables.
2. Students should be able to apply the concept of non-linear programming
3. Students should be able to carry out sensitivity analysis
4. Student should be able to model the real world problem and simulate it.

Syllabus Contents:
Unit 1:
Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit 2
Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit 3:
Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit 4
Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit 5
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

References:
Open Elective
Cost Management of Engineering Projects

Teaching scheme
Lecture: - 3 h/week

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

References:
1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
2. Charles T. Horngren and George Foster, Advanced Management Accounting
3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.
Open Elective
Composite Materials

Teaching scheme
Lecture: - 3 h/week

UNIT – V: Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

References:
Open Elective
Waste to Energy

Teaching scheme
Lecture: - 3 h/week

Unit-I: Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors
Unit-IV: Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.
Unit-V: Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:
AUDIT 1 and 2: ENGLISH FOR RESEARCH PAPER WRITING

Course objectives:

Students will be able to:

1. Understand that how to improve your writing skills and level of readability
2. Learn about what to write in each section
3. Understand the skills needed when writing a Title
4. Ensure the good quality of paper at very first-time submission

Syllabus Contents:

- Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness
- Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.
- key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature
- skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions
- useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

Suggested Studies:

AUDIT 1 and 2: DISASTER MANAGEMENT

Course Objectives: -
Students will be able to:

1. learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
3. develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations
4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

Syllabus Contents:

Introduction: Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.
Disaster Prone Areas In India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics
Disaster Preparedness And Management: Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.
Disaster Mitigation: Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

SUGGESTED READINGS:
2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall Of India, New Delhi.
AUDIT 1 and 2: SANSKRIT FOR TECHNICAL KNOWLEDGE

Course Objectives

1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
2. Learning of Sanskrit to improve brain functioning
3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus Contents:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | • Alphabets in Sanskrit,
 • Past/Present/Future Tense,
 • Simple Sentences | 8 |
| 2 | • Order
 • Introduction of roots
 • Technical information about Sanskrit Literature | 8 |
| 3 | • Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics | 8 |

Suggested reading

1. “Abhyaspustakam” – Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

Course Output

Students will be able to

1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science & technology can be understood
3. Being a logical language will help to develop logic in students
AUDIT 1 and 2: VALUE EDUCATION

Course Objectives:
Students will be able to
1. Understand value of education and self-development
2. Imbibe good values in students
3. Let the should know about the importance of character

Syllabus Contents:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | • Values and self-development – Social values and individual attitudes. Work ethics, Indian vision of humanism.
 • Moral and non- moral valuation. Standards and principles.
 • Value judgements | 4 |
| 2 | • Importance of cultivation of values.
 • Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness.
 • Honesty, Humanity. Power of faith, National Unity.
 • Patriotism. Love for nature, Discipline | 6 |
| 3 | • Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline.
 • Punctuality, Love and Kindness.
 • Avoid fault Thinking.
 • Free from anger, Dignity of labour.
 • Universal brotherhood and religious tolerance.
 • True friendship.
 • Happiness Vs suffering, love for truth.
 • Aware of self-destructive habits.
 • Association and Cooperation.
 • Doing best for saving nature | 6 |
| 4 | • Character and Competence – Holy books vs Blind faith.
 • Self-management and Good health.
 • Science of reincarnation.
 • Equality, Nonviolence, Humility, Role of Women.
 • All religions and same message.
 • Mind your Mind, Self-control.
 • Honesty, Studying effectively | 6 |
Suggested reading

Course outcomes

Students will be able to
1. Knowledge of self-development
2. Learn the importance of Human values
3. Developing the overall personality
AUDIT 1 and 2: CONSTITUTION OF INDIA

Course Objectives:
Students will be able to:

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History of Making of the Indian Constitution: Drafting Committee, (Composition & Working)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Philosophy of the Indian Constitution: Preamble Salient Features</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Contours of Constitutional Rights & Duties: • Fundamental Rights • Right to Equality • Right to Freedom • Right against Exploitation • Right to Freedom of Religion • Cultural and Educational Rights • Right to Constitutional Remedies • Directive Principles of State Policy • Fundamental Duties.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Organs of Governance: • Parliament • Composition • Qualifications and Disqualifications • Powers and Functions • Executive • President • Governor • Council of Ministers</td>
<td>4</td>
</tr>
</tbody>
</table>
Suggested reading

1. The Constitution of India, 1950 (Bare Act), Government Publication.

Course Outcomes:

Students will be able to:
1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
Course Objectives:

Students will be able to:

1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers.
2. Identify critical evidence gaps to guide the development.

Syllabus

<table>
<thead>
<tr>
<th>Units</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | **Introduction and Methodology:**
 - Aims and rationale, Policy background, Conceptual framework and terminology
 - Theories of learning, Curriculum, Teacher education.
 - Conceptual framework, Research questions.
 - Overview of methodology and Searching.
| | | 4 |
| 2 | **Thematic overview:** Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
 - Curriculum, Teacher education.
| | | 2 |
| 3 | **Evidence on the effectiveness of pedagogical practices**
 - Methodology for the in depth stage: quality assessment of included studies.
 - How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
 - Theory of change.
 - Strength and nature of the body of evidence for effective pedagogical practices.
 - Pedagogic theory and pedagogical approaches.
 - Teachers’ attitudes and beliefs and Pedagogic strategies.
| | | 4 |
| 4 | **Professional development:** alignment with classroom practices and follow-up support
 - Peer support
 - Support from the head teacher and the community.
 - Curriculum and assessment
 - Barriers to learning: limited resources and large class sizes
| | | 4 |
| 5 | **Research gaps and future directions**
 - Research design
 - Contexts
 - Pedagogy
 - Teacher education
 - Curriculum and assessment
 - Dissemination and research impact.
| | | 2 |
Suggested reading

Course Outcomes:

Students will be able to understand:
1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
AUDIT 1 and 2: STRESS MANAGEMENT BY YOGA

Course Objectives

1. To achieve overall health of body and mind
2. To overcome stress

Syllabus Contents

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Definitions of Eight parts of yog. (Ashtanga)</td>
<td>8</td>
</tr>
</tbody>
</table>
| 2 | • Yam and Niyam. Do’s and Don’t’s in life.
 i) Ahinsa, satya, astheya, bramhacharya and aparigraha
 ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan | 8 |
| 3 | • Asan and Pranayam
 i) Various yog poses and their benefits for mind & body
 ii) regularization of breathing techniques and its effects- Types of pranayam | 8 |

Suggested reading

1. ‘Yogic Asanas for Group Tarining-Part-I’: Janardan Swami Yogabhyasi Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

Course Outcomes:
Students will be able to:
1. Develop healthy mind in a healthy body thus improving social health also
2. Improve efficiency
AUDIT 1 and 2: PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

Course Objectives

1. To learn to achieve the highest goal happily
2. To become a person with stable mind, pleasing personality and determination
3. To awaken wisdom in students

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neetisatakam-Holistic development of personality</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Verses- 19,20,21,22 (wisdom)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verses- 29,31,32 (pride & heroism)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verses- 26,28,63,65 (virtue)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verses- 52,53,59 (dont’s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verses- 71,73,75,78 (do’s)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Approach to day to day work and duties.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 23, 35,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter 18-Verses 45, 46, 48.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Statements of basic knowledge.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter 12 -Verses 13, 14, 15, 16,17, 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Personality of Role model. Shrimad Bhagwad Geeta:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter2-Verses 17, Chapter 3-Verses 36,37,42,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter 4-Verses 18, 38,39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chapter18 – Verses 37,38,63</td>
<td></td>
</tr>
</tbody>
</table>

Suggested reading

1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes

Students will be able to

1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
3. Study of Neetishatakam will help in developing versatile personality of students.