Scheme & Syllabus of B. Tech. Production Engineering [P.E.]
3rd to 8th Semester effective for Batch 2011

By
Board of Studies Mechanical Engineering/ Production Engineering / Industrial Engineering
Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Load Allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Internal</td>
</tr>
<tr>
<td>BTPE301</td>
<td>Strength of Materials</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE302</td>
<td>Machine Drawing</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>BTPE303</td>
<td>Thermal Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE304</td>
<td>Theory of Machines</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE305</td>
<td>Manufacturing Processes – I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE306</td>
<td>Strength of Materials Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE307</td>
<td>Thermal Engineering Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE308</td>
<td>Theory of Machines Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE309</td>
<td>Manufacturing Processes – I Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Advisory Meeting</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>BTPE 310</td>
<td>Workshop Training*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
<td>3</td>
<td>15</td>
<td>380</td>
</tr>
</tbody>
</table>

* Workshop Training will be imparted in the Institution at the end of 2nd semester for Four (04) weeks duration (Minimum 36 hours per week). Industrial tour will also form part of this training.

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Load Allocation</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Internal</td>
</tr>
<tr>
<td>BTPE401</td>
<td>Design of Machine Elements</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE402</td>
<td>Fluid Mechanics & Fluid Machinery</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE403</td>
<td>Manufacturing Processes-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE404</td>
<td>Engineering Materials and Metallurgy.</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>BTPE405</td>
<td>Industrial Organization and Management</td>
<td>4</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BTPE406</td>
<td>Design of Machine Elements Practice</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE407</td>
<td>Fluid Mechanics & Fluid Machinery Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE408</td>
<td>Manufacturing Processes-II Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>BTPE 409</td>
<td>Engineering Materials and Metallurgy Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Advisory Meeting</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>General Fitness</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>02</td>
<td>09</td>
<td>420</td>
</tr>
</tbody>
</table>
5th SEMESTER B.Tech (Production)

<table>
<thead>
<tr>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Int</th>
<th>Ext</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTPE-501 Operations Research</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>BTPE-502 Machining Science</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>BTPE-503 Engineering Metrology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>BTPE-504 Metal Forming</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>BTPE-505 Jigs, fixtures and Tool Design</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>BTPE-506 Machining Science Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>BTPE-507 Engg. Metrology Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>BTPE-508 Metal Forming Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>BTPE-509 Jigs, fixtures and Tool Design Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>BTPE-510 Industrial Training*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Advisory meeting 1

Total 18 2 11 800 25

Total contact hours = 31

*Industrial Training will be imparted in the reputed industries at the end of 4th semester of 06 weeks duration.

6th SEMESTER* B.Tech (Production)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Int</th>
<th>Ext</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTPE-601 Industrial Engg</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BTPE-602 Product Design and Development</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BTPE-603 Tool and Cutter Design</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BTPE-604 Non-Traditional Machining Methods</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BTPE-DE Department Elective-I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BTPE-605 Industrial Engg Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTPE-606 Product Design and Development Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BTPE-607 Minor Project*</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GF-600 General Fitness</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advisory meeting 1

Total 20 2 6 800 24

Total contact hours = 28

Note: Only one Project will be carried out in parts as Minor Project in 6th semester and as Major Project in 7/8th semester. Literature Survey, problem formulation, assessment for viability of the Project, objectives and methodology for the Project shall be decided and formulated as Minor Project in the 6th Semester.
7th SEMESTER B.Tech (Production)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Int.</th>
<th>Ext</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTPE-701</td>
<td>Computer Integrated Manufacturing</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>BTPE-702</td>
<td>Machine Tool Design</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>BTPE-703</td>
<td>Industrial Automation and Robotics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>BTPE-DE</td>
<td>Departmental Elective-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>BTPE-704</td>
<td>Industrial Automation and Robotics Lab.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>30</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>BTPE-705</td>
<td>Machine Tool Design Lab.</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BTPE-706</td>
<td>Major Project*</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>GF-700</td>
<td>General Fitness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Advisory meeting</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>850</td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

Total Contact hours = 31

*NOTE: - In the Major Project, the problem formulated as Minor Project in 6th semester is to be extended and executed. The theory, design, construction/fabrication, computer-modeling, experimentation on the fabricated models, results, analysis followed by discussion regarding suitability / non suitability of the Project or any positive gain in the project made with conclusions and recommendations for future extension of the project must be covered.

8th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Internal</th>
<th>External</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTPE-800</td>
<td>Software Training</td>
<td>150</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Industrial oriented</td>
<td>300</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Project Training</td>
<td>450</td>
<td>300</td>
<td>750</td>
</tr>
</tbody>
</table>

Sek 12/7/15
List of Elective Subjects:

Group-1
- DE/PE-1.1 Artificial Intelligence in Manufacturing
- DE/PE-1.2 Industrial Finishing Technology
- DE/PE-1.3 Welding Technology
- DE/PE-1.4 Plastic and Ceramic Technology
- DE/ME-1.5 Non-Destructive Testing
- DE/ME-1.6 Maintenance and Reliability Engg
- DE/PE-1.7 Industrial Organization and Management
- DE/PE-1.8 Industrial Tribology

Group-2
- DE/PE-2.1 Investment Planning
- DE/PE-2.2 Technology Management
- DE/ME-2.3 Marketing and Financial management
- DE/ME-2.4 Productivity Management
- DE/ME-2.5 Operation management
- DE/ME-2.6 Total Quality Management
- DE/ME-2.7 Material Management
- DE/ME-2.8 Human Resource management
- DE/ME-2.9 Project Management

Group-3
- DE/PE-3.0 Industrial Packaging
- DE/PE-3.1 Network Analysis
- DE/PE-3.2 Environmental degradation of Materials
- DE/PE-3.3 Material Handling and Plant Layout
- DE/PE-3.4 Prod. Planning and Control
- DE/ME-3.5 Industrial Safety and Environment
- DE/ME-3.6 Entrepreneurship
- DE/ME-3.7 Modeling and Simulation

Note:
1. Minimum 10 students are required to offer a Department Elective Subject
2. The student shall select both the electives courses from the same group out of three groups (Group-1, Group-2, and Group-3)
Third Semester
BTPE-301 Strength of Materials

Course Objectives:

- To prepare students to understand the simple stresses strains and deformation in components due to external loads.
- To enable the students to evaluate 2D, 3D and principal stresses (analytically and graphically) for different sections.
- To enable the student to draw the shear forces and bending moments diagram and to calculate bending stresses in structural member of an engineering system.
- Identify the applicable theory, and apply the appropriate equations to calculate the stresses, strains and/or displacements in axial members.
- To assess stresses and deformations through mathematical models of beams, twisting bars, and torque / power transmitter (Shafts).
- To calculate the internal stresses, strains and/or displacements in thin pressure vessels.
- To determine the buckling loads of various types of columns under different conditions

Expected Outcomes: At the end of this course, students should be able to:

- Perform design and analysis of thin-walled pressure vessels.
- Design the structures subjected to wide range of loading conditions, including thermal loads.
- Solve problems involving simple and combined modes, including torsion and bending

Unit I

Simple stresses and strains: Concept of stress and strain; St. Venant’s principle, stress and strain diagram, Hooke's law, Young's modulus, Poisson ratio, stress at a point, stress and strains in bars subjected to axial loading. Modulus of elasticity, stress produced in compound bars subject to axial loading. Temperature stress and strain calculations due to applications of axial loads and variation of temperature in single and compound bars. Compound stress and strains, the two dimensional system; stress at a point on a plane, principal stresses and principal planes; Mohr's circle of stress; ellipse of stress and their applications. Generalized Hook's Law, principal stresses related to principal strains

Unit II

Bending moment and shear force diagrams: S.F and B.M definitions. BM and SF diagrams for cantilevers, simply supported beams with or without overhangs and calculation of maximum BM and SF and the point of contraflexure under the following loads:
i) Concentrated loads

ii) Uniformity distributed loads over the whole span or part of span

iii) Combination of concentrated loads (two or three) and uniformly distributed loads

iv) Uniformity varying loads

v) Application of moments

Relation between rate of loading, shear force and bending moment

Unit III

Theory of bending: stresses in beams due to bending, assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular channel, I and T-sections; Combined direct and bending stresses in aforementioned section, composite / flitched beams.

Unit IV

Torsion: Derivation of torsion equation and its assumptions. Applications of the equation to the hollow and solid circular shafts, torsional rigidity, combined torsion and bending of circular shafts principal stress and maximum shear stresses under combined loading of bending and torsion.

Unit V

Thin cylinders and spheres: Derivation of formulae and calculation of hoop stress, longitudinal stress in a cylinder, effects of joints, change in diameter, length and internal volume; principal stresses in sphere and change in diameter and internal volume

Unit VI

Columns and struts: Columns and failure of columns: Euler's formulas; Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications.

Unit VII

Slope and deflection: Relationship between moment, slope and deflection, Moment area method; method of integration; Macaulay's method: Use of all these methods to calculate slope and deflection for the following:

a. Cantilevers

b. Simply supported beams with or without overhang

c. Under concentrated loads, uniformly distributed loads or combination of concentrated and uniformly distributed loads

Suggested Readings / Books

- Introduction to Solid Mechanics by D.H Shames, (Prentice Hall Inc.)
- Strength of Materials by Dr.D.S Bedi; (S Chand Publishers)
- Strength of Materials by R.S Lehri and A.S. Lehri, (S.K Kataria and Sons.)
- Strength of Materials by Dr.Sadhu Singh (Khanna Publishers)
- Strength of Materials by R.S Khurmi (S.Chand & Co.)
Course Objectives:

- Understanding the principles and requirements of production drawings and various symbols used in drawing.
- How to assemble and disassemble the various couplings, pipe fittings, boiler mountings, bearing, machine tool parts, screw jack, and drill press.
- To enable students to draw various machine tools and produce their material bills.
- To enable students to draft the various machine tools by computer aided drafting.

Expected Outcomes:

The course studied will enable the students to:

a. Read, draw and interpret the entities being drawn in the course.

b. Increase the drafting skills for various industrial applications

c. Understand the concept of limits, fits and tolerances in various machine parts.

Unit I

Principles of drawing, requirements of production drawings, symbols of standard tolerances, machining symbols, sectioning and conventional representation, dimensioning, welding symbols, various types of screw threads.

1. Assembly and Dis-assembly of the following manually and using computer aided drafting.

a) Couplings: Pin type, flexible coupling, claw coupling, cone friction clutch, single plate friction clutch.

b) Pipe and pipe fittings.

c) IC Engine Parts: Piston, connecting rod, Cross head and eccentric

d) Bearings: Swivel bearing, thrust bearing, Plummer block

e) Machine tool parts: lathe tail stock, tool post.

f) Miscellaneous: Screw jack, drill press vice.

2. Drafting of simple Mechanical components on computer.

NOTE: First angle projection to be used. Drawings should contain bill of materials and should illustrate surface finish. The syllabus given above indicates the broad outlines and the scope of the subject to be covered. It is not necessary to cover all the drawing exercises of the types of machine tools mentioned above.

Suggested Readings / Books:
- Machine Drawing by PS Gill, (Kataria & Sons.)
- Machine Drawing by ND Bhatt, (Charotar)
Course Objectives:
This course is designed for Production Engineering students for comprehensive study of steam power plants, its allied components and reciprocating compression machines. The various objectives of this course are as follows:

- To understand and recognize the various components of Heat transfer modes.
- To provide knowledge about different types of steam boilers / generators, boiler mountings and accessories and methods for improving boiler performance.
- To enable the students to understand combustion phenomenon.
- To understand non conventional energy resources.
- To understand the working, design and analysis of various thermal devices viz. steam nozzles, condensers and steam turbines.
- To understand working and performance of refrigeration and air conditioners.

Expected outcomes:

- Student will be able to identify, track and solve various Heat transfer problems.
- Student can recognize and understand the working of devices involved in steam power generation system.
- Student will be able to evaluate theoretically the performance of various components involved in steam power plants and reciprocating compression machines.
- Student will have ability to design some components of steam power plants and reciprocating compression machines.
- Student will be able to suggest and design different types of boilers for different commercial applications.
- Student can apply his knowledge to find out various losses from different thermal systems and can even suggest various preventive measures.

Unit I
Heat Transfer: Modes of Heat Transfer – Conduction, Convection and Radiation. Steady and unsteady heat transfer, Fourier law of conduction and thermal conductivity, Conduction of heat through a slab, through a hollow cylinder and through a hollow sphere, Natural and forced convection, convective heat transfer coefficient, Combined conduction and convective heat transfer, Critical thickness of insulation, Fin and its application, Types of fins, Analysis of heat transfer through a rectangular fin, Introduction to radiation, total emissive power, monochromatic emissive power, emissivity, Absorptivity, reflectivity and transmissivity, Black body, Opaque Body, White

Unit II

Unit III

Refrigeration and Air Conditioning: Description of simple Vapour compression and Vapor absorption cycles, relative merits and demerits, Properties of refrigerants, Elementary idea of ozone friendly refrigerants, Concept of Psychrometry, Definitions of psychometric terms i.e. dry air, moist air and saturated air, absolute humidity, relative humidity ratio or specific humidity, degree of saturation, Dew point temperature, Dry bulb temperature and wet bulb temperature. Psychometric charts.

Unit IV

Boilers: Fire tube and water tube boilers, Description of Lancashire, Cochran, Locomotive, Babcock- Wilcox Boiler, mountings and accessories.

Unit V

Suggested Readings / Books:

- Thermal Engg. by V.P. Vasandani and D.S. Kumar, (Treatise on Heat Engineering Metropolitan)
- Refrigeration & Air Condition by C.P. Arora(Tata McGraw Hill)
- Thermal Engineering by Domkundwar (Dhanpat Rai & Co.)
- Thermal Engineering by R. K. Rajput(S.Chand & Co.)
Course Objectives:-
The subject of theory of machines deals with various aspects of parts of different machines. The course shall enable students to:-

- Understand the principles and fundamentals of static as well as dynamic parts.
- Provide mathematical formulae to ensure the feasibility of various parts of machines and structures.
- Introduction of different types of steering mechanisms.
- Provide technical aspects for the application of different parts in industry.

Expected Outcomes:-
At the end of the course, the student shall be able to:-

- Understand the working of various primitive components of a machine.
- Develop mathematical skills for the computation of industry related problems.
- Determine the various physical parameters of power transmission devices, friction devices and different governing devices.
- Compute the essential parameters like fluctuation of speed and energy in a flywheel of a vehicle, slotting machine etc.
- Understand the parameters involved in the working and application of different types of brakes and clutches of a vehicle.

Unit I
Basic concept of machines: Link, mechanism, kinematic pair and chain, principles of inversion, inversion of a four bar chain, slider- crank-chain, double slider crank chain and their inversions, kinematic pairs and analytical/geometrical methods for finding displacement velocity and acceleration of all basic mechanisms.

Unit II
Flywheels: Turning moment and crank effort diagrams for reciprocating machines Fluctuation of speed, coefficient of fluctuation of speed and energy, Determination of flywheel effect.

Unit III
Belts, Ropes and chains: material types of drives, idler pulley, intermediate or counter shaft pulley, angle drive, quarter turn drive, velocity ratio, crowning of pulleys, loose and fast pulley, stepped or cone pulleys, ratio of tension on tight and slack sides of belts. HP transmitted by belts including consideration of creep and slip, centrifugal tensions and its effect on HP transmitted. Flat, V-belts and rope materials. Length of belt, rope and chain drives.
Unit IV

Brakes, Dynamometers and Clutches: Types of brakes, principle, function of brakes of various types. Problems to determine braking capacity, types of dynamometer: absorption, transmission and driving. Function of Clutches. Disc and Cone clutches.

Unit V

Cams: Types of cams and followers, definitions of terms connected with cams, displacement, velocity and acceleration diagrams for cam followers, various motions: SHM, uniform acceleration and retardation, analysis of follower motion for circular, concave, tangent cam profiles.

Unit VI

Gears & Gear Trains: Toothed gears and spur gears, types of toothed gears, definitions: pitch circle diameter, pitch surface, pitch point, circular pitch, module, pitch, diametrical pitch, addendum, dedendum, clearance, outside and internal diameters, root diameter, base circle diameter, face and flank of tooth, pressure angle, path of contact, arc of contact, conditions for correct gearing, forms of teeth, involute and its variants, interference and methods of its removal. Types of gear trains, simple, compound and epicyclic gear trains, problems involving their applications, estimation of velocity ratio of worm and worm wheel, helical and spiral gears.

Suggested Readings / Books:
- Theory of Machines by PL Ballaney, (Khanna Publishers)
- Theory of Machines by Shigley, (Mc Graw Hill)
- Theory of Machines by R.S.Khurmi, (S.Chand and Sons)
- Theory of Machines by Thomas Bevan(Pearsons Publishers)
- Theory of Machines by S.S Ratan (Mc Graw Hill)

BTPE-305 Manufacturing Process –I

Course Objectives: To provide Comprehensive knowledge about:
- Fundamentals of casting and welding processes.
- Essentials components of casting and welding processes.
- Procedure or methodologies for conducting the casting and welding processes.
- Handling of castings and welds.

Expected outcomes:
- The subject will make the students aware of fundamental principles about casting and welding processes so as to apply these principles for studying the processes.
- Student will be able to identify various equipments and accessories required for performing the casting and welding processes.
- Students will be able to demonstrate and guide the technicians for successful conduct of casting and welding processes in industrial applications.
• The subject will create the ability to test the products made by casting and welding processes so as to appreciate their utility in industrial applications.

• Student will suggest a suitable process for manufacturing of components.

• Ability to understand the latest technologies in casting and welding processes will get increased.

Unit –I

Unit –II

Suggested Readings / Books:

• Welding Technology by R.S. Parmar, (khanna Publishers).
• Workshop Technology Vol.1 by B.S Raghurawarshi (Dhanpat Rai & Co.)
• Welding and Welding Technology by Little (McGraw-Hill Education (India) Pvt Ltd).
• Foundry Technology by O.P Khanna ((Dhanpat Rai & Co.)
BTPE-306 Strength of Materials Lab
1. To perform tensile test in ductile and brittle materials and to draw stress-strain curve and to determine various mechanical properties.
2. To perform compression test on C.I. and to determine ultimate compressive strength.
3. To perform shear test on different materials and determine ultimate shear strength.
4. To perform any one hardness test (Rockwell, Brinell & Vicker's test) and determine hardness of materials.
5. To perform impact test to determine impact strength.
6. To perform torsion test and to determine various mechanical properties.
7. Study of performance of Fatigue & Creep tests.
8. To perform bending test on beam (wooden or any other material) and to determine the Young's modulus and Modulus of rupture.
9. To perform Torsion test and close coiled helical spring in tension and compression and to determine modulus of rigidity/stiffness.
10. Determination of Bucking loads of long columns with different end conditions.

BTPE-307 Thermal Engineering Lab
1. Determination of coefficient of heat transfer for free/forced convection from the surface of a cylinder / plate when kept along the direction of flow.
2. Determination heat transfer coefficient of radiation and hence find the Stefan Boltzman's constant using two plates/two cylinders of same size by making one of the plates/cylinders as a black body.
3. Trial of single Cylinder, four stroke diesel engine to calculate BHP, IHP, and air fuel ratio thermal efficiency.
4. Morse test on multi cylinder petrol engine.
5. To find C.O.P of domestic refrigerator.
6. To find COP of an Air conditioner.
7. To find COP of water cooler.
8. Study of various types of boilers Models

BTPE-308 Theory of Machines Lab
1. Study of working principles and construction of the different types of link motions and mechanisms.
2. Study of different types of gears and gear trains.
3. Study of different types of brakes and clutches.
4. Study of various types of quick return mechanisms and determination of quick return effects.
5. To study various types of cams and followers and the working, construction of a cylindrical cam for
6. To study the flywheel and draw turning moment and crank effort diagram for a four stroke, single cylinder petrol and diesel engines.

7. Study various types of belts and calculate the length of belt and power transmitted by the flat and V-belts.

8. Study of various types of dynamometers and calculate the forces on a multi cylinder petrol engine.

BTPE-309 Manufacturing Processes-I Lab

Casting

1. To determine clay content and moisture content in a moulding sand sample.
2. To find shatter index of different sand samples and to compare and discuss the results.
3. To test tensile, compressive, transverse strength and hardness a moulding sand in dry/wet conditions.
4. Determination of permeability of a moulding sand sample.
5. Measurement of grain fineness number.
6. To conduct a comparative study of various types of modern furnaces used in foundry industry.
7. To make detailed calculations for design of riser and gate for a given component and perform its casting.

Welding

2. Making of lap, Butt, T-joints etc. with electric arc welding.
3. Study of MIG welding equipment and making a weld joint by this process.
4. Study of TIG welding equipment and making a weld joint by this process.
5. Study of different process parameters in Friction welding and preparing a weld joint by this process.
6. To study various welding equipments namely rectifiers, generators, welding torch etc.
7. To study the resistance welding processes and prepare a spot-welded joint.

Note: It is essential for each student to visit at least one Foundry and one Welding industry and submit a detailed industrial tour report.
Fourth Semester
BTE-401 Design of Machine Elements

Course Objectives:
The main objective of the course is to design concepts of different machine elements. The aim of this course is:-

- Application of scientific principles from various fields of engineering to create new technical feats, which can perform specific functions with maximum economy.
- To help students in identifying various kinds of loading conditions and corresponding stresses in various machine elements.
- To guide the students in designing a product from the conceptual stage to the final finished form in shortest possible time.
- To make them understand the concepts in designing of permanent and temporary fasteners.
- To study design of keys and couplings, brakes and clutches.

Expected Outcomes:
After the completion of this course the students is expected to -

- To understand the design flow chart for existing and new conceptual design.
- To deal with the machine design problems in technical way using design principles and procedures.
- To understand different stresses and strains (loading conditions), and also effect of these stresses and strains on different machine members.
- To deal with problems of designing various types of joints and other important machine elements in a technical way.
- To design shafts, keys and couplings using standard steps taught in subject.
- To design the brakes and clutches.

Unit –I
Scope and meaning of machine design. Sources of design data. Design considerations from economics, manufacturing, aesthetics and ergonomics aspects. Design Process, Selection of Materials.

Unit –II

Unit –III
Unit –IV
Design of Cotter and Knuckle Joints

Unit –V
Shafts: - Design of shafts under different types of loading conditions.

Unit –VI
Keys & Couplings: - Design of rectangular and square keys, muff coupling, split muff coupling, flange coupling, bushed-pin flexible coupling.

Unit –VII
Levers: - Design of straight levers, Bell-Crank levers, foot levers, hand levers.

Unit –VIII
Brakes and Clutches: - Design of friction plate and cone clutches, and simple type brakes.

Unit –IX
Introduction to Design for Manufacturing and Assembly

Suggested Readings / Books:
- Machine Design by Dr. Sadhu Singh (Khanna Publishers)
- Machine Design by D.K.Aggarwal & P.C.Sharma (S.K Kataria and Sons)
- Design and Manufacturing by Krishnamurthi, (S.K. Kataria and Sons)

NOTE: Design data book is NOT allowed in the examination.

BTPE-402 Fluid Mechanics & Fluid Machinery

Course objectives: This subject helps in introducing the fluids and their properties to the students.

The aim of the course is
- To guide the students in studying kinematics and dynamics involved during fluid flow are studied in this course
- To understand the dimensional analysis this is an important aspect for checking the dimensional homogeneity with the help of different methods
- To enhance the knowledge of the student in developing the skills required for working upon the operating conditions of these turbines and pumps.

Expected outcomes: After the completion of this course the students is Expected to know
- How to solve problems relating to kinematic and dynamics of fluid flow.
- How to analyze the fluid dynamic conditions and in assessing the equations involved on the basis of dimensional homogeneity
- The various problems arising in turbines and pumps.
Unit I

Fluids & Their Properties: Concept of fluid; Ideal & Real fluids; significance of fluid Mechanics; continuity concept of fluid; density, specific weight, viscosity & its dependence on temperature; vapor pressure & cavitations; compressibility & bulk modulus, Newtonian & non Newtonian fluids.

Unit II

Fluid statics, kinematics & dynamics: Concept of pressure, Pascal's Law, Buoyancy & floatation, stability of floating & submerged bodies. Classification of fluid flows; streamline, path line & streakline; continuity equation in Cartesian coordinates. Euler's equation; Bernoulli's Equation & steady flow energy equation, Impulse momentum equation.

Unit III

Dimensional Analysis: Fundamental & derived units & dimensions; dimensional homogeneity; Rayleigh's & Buckingham's Pi method for dimensional Analysis.

Unit IV

Laminar & Turbulent flows & their measurements: Flow in circular cross section pipes; Turbulent & flow losses in pipes; Darcy Equation. -Manometers; pitot tubes; venturimeter & Orificemeter; rotameter.

Unit V

Fluid machinery concepts: Impulse momentum principle; Jet impingement on stationary & moving flat plates and on stationary or moving vanes with jet striking at center & tangentially at one end of vane, calculations for force exerted, work done & efficiency of jet.

Unit VI

Turbines: Components parts & operation of Pelton, Franics & Kaplan Turbines Draft Tube- Its function & types (No Numerical).

Unit VII

Pumps: Component parts & operation of centrifugal & Reciprocating pumps: Suction, delivery & manometric heads of centrifugal pumps; priming & priming devices. Multistage pumps, series & parallel arrangements.

- Pressure variation due to piston acceleration & acceleration effects.
- Suction/delivery pipes in reciprocating pumps; air vessels.

Suggested Readings/Books:
- Fluid Mechanics & fluid power Engg. By D.S. Kumar (Metropolitan Publishers)
- Fluid Mechanics by R.K.Bansal, (Laxmi Publications)
- Fluid Mechanics by Potter & Wiggert (Cengage Learning)
- Fluid Mechanics by A.K Mohanty (PHI Learning Pvt.Ltd.)
- Fluid Mechanics and Hydraulic Machines by R.K.Rajput (Khanna Publishers)
BTPE-403 Manufacturing Processes-II

Course objectives: This course has been designed for providing basic knowledge of machine tools. The aim of the course is
- To make the students aware of principles and requirements for comprehensive understanding of metal cutting or machining.
- To make students aware of the existing technologies related to this process with the aim of appreciating their industrial applications.

Expected outcomes: After the completion of this course the students is Expected
- To completely understand the machining process
- To understand the various process parameters involved in different processes.
- To apply this knowledge for practical use and application of manufacturing processes in the industries.

Unit I
Lathe Machine & its operations: Lathe & its accessories, Lathe specifications, Lathe cutting tools, speed, feed, depth of cut & machining time, various operations on Lathe (turning, facing, copy turning, boring, counter boring, parting off, chamfering, threading, chamfering etc.), Attachments used on Lathe; Turret & Capstan Lathe, Tool holding devices. Detailed calculations and numerical related to material removal rate, surface finish and tool wear for turning operations

Unit II
Milling Machines & its operations:
Milling machines (Horizontal, Vertical & Universal milling machine), specifications, accessories, standard & Special attachments (Vertical milling attachment, High speed milling attachment, Slotting attachment, Universal dividing head, Angular milling attachment); milling operations; Indexing, Type of indexing (Direct, Simple, Compound, Differential, Angular); milling cutters, size, shape & material of milling cutters; numerical related to cutting speed, feed, depth of cut & machining time.

Unit III
Shapers, Planer and Slotting machine:
Types of Shaper, Planners & Slotters and its operations, specifications; quick return mechanisms (crank & slot, hydraulic) shaper tools; calculations of cutting speed, feed and machining time.

Unit IV
Press Working: Definition, Various types of presses, feeding mechanisms, Various operations (Blanking, Piercing, Perforating, Shearing, Lancing, Drawing, Coining, Embossing, Stamping.
Notching etc.); Various types of dies (Simple, Compound, Combination, Progressive, Transfer, Rubber die).

Unit V

Drilling Machines & Operations: Types of drilling machines, specifications, Drilling operations (drilling, counter sinking, spot facing, reaming, tapping etc); Multi-spindle drilling head, Drills and Reamers; Type, specifications; Numerical problems related to cutting speed, feed, depth of cut and machining time.

Unit VI

Grinding Machines: Definition, Composition of Grinding wheel, Standard marking of Grinding wheel, Shapes of Grinding wheels; Types of Grinding Machines (cylindrical, surface); Dressing and Truing of Grinding wheels; machining time; Centreless grinding, Honing, Lapping, Super finishing.

Unit VII

Boring Machines: Type of boring machines (horizontal, vertical, fine boring machine), Boring tools, deep hole boring, Machining time, Jig boring (description, hole location procedure).

Unit VIII

Broaching Machines: Types of Broaching machines, Broaching tools, Materials for Broach, Cutting action, Chip disposal, applications of broaching, advantages and limitations.

Unit IX

Gear Manufacturing: Methods used in production of spur, bevel and worm gears (Powder metallurgy, Moulding, Forming, Rolling, Gearhobbing and shaping), Gear finishing.

Suggested Readings / Books:
- Manufacturing Processes by Myron L. Begeman (John Wiley & Sons)
- Production Technology by H.M.T. (Tata McGraw-Hill Education)
- Manufacturing processes (Vol. 2.) by Hazra Chowdhary (Media Promoters & Publishers Pvt. Ltd)
- Manufacturing Processes by S. Kalpakjian (Pearsons)
- Workshop Technology (Vol.2) by B.S Raghuvanshi (Dhanpat Rai & Co.)

BTPE-404 Engineering Materials & Metallurgy

Course objectives: The aim of the course is
- To understand various types of engineering materials and their physical as well as mechanical properties.
- To understand various heat treatment processes on different metals and alloys, phase transformations, various equilibrium diagram.

Expected Outcomes: After the completion of this course the students is Expected to know
- Complete information of metallurgical characteristics (atomic structures, equilibrium diagram, phase transformation) of engineering materials (ferrous and non-ferrous),
• Mechanical behaviors of the materials and application of heat treatments processes in industries.

Unit I
Atomic structure of metals crystal structure, crystal lattice of (1) Body centered cubic (ii) face centered cubic (iii) closed packed hexagonal, crystallographic notation of atomic planes, polymorphism and allotropy, Solidification of crystallization (i) nuclear formation (ii) crystal growth (iii) crystal imperfection. Elementary treatment of theories of plastic deformation, phenomenon of slip. Twinning. Dislocation. Identification of crystallographic possible slip planes and direction in F.C.C. B.C.C. C.P.H., recovery, re-crystallization, preferred orientation causes and effects on the property of metals.

Unit II
Introduction to Engineering materials; their mechanical behavior, testing and manufacturing properties of materials; physical properties of materials; classification of engineering materials.

Unit III
General principles of phase transformation in alloys, phase rule and equilibrium diagrams, Equilibrium diagrams of Binary system in which the components form a mechanical mixture of crystals in the solid state and are completely mutually soluble in both liquid state. Equilibrium diagrams of a systems whose components have complete mutual solubility in the liquid state and limited solubility in the solid state and in which the solid state solubility decreases with temperature; Equilibrium diagram of alloys whose components have complete mutual solubility in the liquid state and limited solubility in solid state (Alloy with a peritectic transformation) Equilibrium diagrams of a system whose components are subject to allotrophic change. Iron carbon equilibrium diagram, phase transformation in the iron carbon diagram: (i) Formation of Austenite (ii) Transformation of austenite into pearlite (iii) Martensite transformation in steel, time temperature transformation curves.

Unit IV
Principles and applications of heat treatment processes viz annealing, normalizing, hardening, tempering; hardenability & its measurement, surface hardening processes. Defects in heat treatment and their remedies; Effects produced by alloying elements on the structures and properties of steel. Distribution of alloying elements (Si. Mn. Ni. Cr. Mo. TL. AL) in steel.

Suggested Readings / Books:
• Engg. Physical Metallurgy by Y. Lakhtin, (Mir Publishers)
• Heat Treatment of Metals by B. Zakhav (Peace Publishers)
• Engineering Metallurgy by V. Raghavan (PHI Learning Pvt. Ltd)
• Introduction to Physical Metallurgy by Avner (Tata McGraw Hill)
• Material Science & Metallurgy by O.P Khanna (Dhanpat Rai & Co.)
BTPE-405 Industrial Organization & Management

Course objectives: The aim of the subject is to make students aware with-

- Types of business organization, organization structure characteristics, departmentalism.
- Concepts of industrial psychology and Management by Objectives.
- Management concepts, Need for Management, Management functions, scientific management.
- Need for planning, characteristics, steps in planning, Principles of Organizing, formal and informal organization, Steps in organizing.
- Principles of directing, Supervision, Activities of Supervisor, Leadership styles, Path goal approach.

Expected Outcomes: After studying the course the student will be able to-

- Understand types of business organization and concepts of industrial Psychology.
- Act as the supervisor and leader in Industrial Environment.
- Plan and organize the basic Industrial activities.
- Understand the modern management concepts like MBO, Management functions, scientific management

Unit I

Industrial Organization: Types of business organization, organization structure characteristics, departmentalism, authority-span of control- matching a job- division of labor-lateral relationship-delegation-chain of command-types of organization structures: line or sealer, functional, line and staff and functional committee, organization chart- question

Unit II

Industrial Psychology: Introduction-definition-classification-scope-basic concept-role application of industrial psychology Management by Objective: Definition, procedure, advantages and disadvantages of MBO, Problems in approach of MBO in India Management concepts, Need for Management, Management functions, Scientific management, Modern management approaches: Introduction to Japanese management concepts, Systems concept, Organizations as system, Approaches to management of systems.

Unit III

Planning: Need for planning, characteristics, steps in planning, Principles of Organizing, formal and informal organization, Steps in organizing, span of control, organization charts, Types of organization, Authority and Responsibility. Directing: Characteristics, Principles of directing, Supervision, Activities of Supervisor, Leadership styles, Path goal approach, Effective Leadership, Management grid, Leadership continuum.
Unit IV

Communication: Process, Types, Barriers to effective communication. Co-ordination: Introduction, Principles and Problems in Co-ordination. Management Information System: Concept, Characteristics and importance of MIS, Types of Information systems, role of computers in MIS, Operating elements of MIS, Information needs of MIS, Functions of information systems, Management reports, Strategic and project planning for MIS, Objectives and plans of MIS with business plans, Project Planning for MIS.

Suggested Readings / Books:
- Principles of Management by Koontz and donell (Tata McGraw Hill)
- Information Systems for Modern Management by Mudrick,Ross and Clagget (PHI)
- Industrial organization and engineering Economics by Sharma and Banga, (Khanna Publishers)

BTPE-406 Design of Machine Elements Practice

1. Select a daily use product and design the conceptual design by applying the design process talking the controlling parameters
2. Make a list of mechanical components and know their materials and suggest some alternative materials for the each on of them.
3. Design a wall bracket, which is being used in real life by actual measurement of load.
 - a. Welded joints
 - b. Riveted and bolted joints
 - c. And justify your findings
4. Find a flange coupling in the college laboratory and justify its design by actual measurements.
5. Design a shaft used in some practical application, by actual working and loading conditions.
6. Select a braking system lever (both hand and foot lever) and justify the design parameters.
7. Justify the design of single plate clutch of a engine assembly
8. Design of software in some high level language or excel sheets for design of a component.

BTPE-407 Fluid Mechanics & Fluid Machinery Lab

1. To study flow through a variable area duct & verify Bernoulli's energy equation.
2. To determine coefficient of discharge for venturimeter.
3. To determine coefficient of discharge for orifice.
4. To study transition from laminar to turbulent flow and to ascertain lower critical Reynolds No.
5. To determine friction coefficients for pipes of different materials.
6. To draw Characteristics of Francis Turbine.
7. To study constructional features of reciprocating pump & to perform test on it for Determination of pump performance.
8. To draw the characteristics of pelton turbine
9. To draw characteristics of centrifugal pump.

BTPE-408 Manufacturing Processes -II Lab

1. Preparation of detailed working sketches describing constructional features of following machines through drawing/ sketches:-
 a. Lathe
 b. Capstan & Turret Lathe
 c. Radial Drilling Machine
 d. Universal Milling Machine
 e. Shaper and Planer
 f. Plastic Moulding Machine
 g. Grinding Machines (Surface, Cylindrical)
 h. Gear Cutting Machines etc.
 i. Hydraulic Press

2. Study of lubrication system in the machine tools.
3. Advanced exercises on Lathe where the students will work within specified tolerances, cutting of V-threads and square threads (internal as well as external).
4. Production of machined surfaces on shaper and planer.
5. Exercises on milling machines; generation of plane surfaces, production of spur gears and helical Involute gears, use of end mill cutters.
6. Grinding of single point cutting tool, cutters and drills.
7. Study of recommended cutting speeds for different tool-work material combinations.
8. Identification of different cutting tool and work materials.

BTPE-409 Engineering Materials & Metallurgy Lab

1. Study of different Engineering materials and their Mechanical properties.
2. To study the microstructures of the following materials
 (i) Hypo Eutectoid & Hyper Eutectoid steels.
 (ii) Hypo- Eutectic cast Iron and Hyper Eutectic cast Iron.
 (iii) Grey and white cant Iron
 (iv) Nodular and Malleable cast Iron
 (v) Non-ferrous metals i.e. Al, Mg, Cu, Ni, Son. And their alloys.
5. Study of microstructure and hardness of steel at different rates of cooling.
6. Hardening of steel, effect of quenching medium and agitation of the medium on hardness.
7. Effect of carbon percentage on the hardness of steel.
8. Harden ability test by Jominy's End quench test.
10. To study the case hardening processes i.e. carburizing, Nitriding, cyaniding etc.
11. To study and construct the T-T-T diagram for steels.
Semester 5th
1. **Introduction:** Introduction, characteristics, objectives and necessity of operation research (OR), scope of OR in industry and management. Role of computers in OR, limitations of OR.

2. **Linear Programming:** Introduction to linear programming, formulation of linear programming problems, graphical solution, simplex algorithm, computational procedure in simplex, duality and its concept, application of L.P. model to product mix and production scheduling problems, limitations of linear programming.

3. **Transportation model:** Definition of transportation model, formulation and solution methods, and degeneracy in transportation problems.

4. **Assignment Model:** Definition of assignment model, comparison with transportation model, formulation and solution methods, the travelling salesman problem.

5. **Queuing Models:** Application of queuing models, characteristics of queuing models, single channel queuing theory, solution to single channel with poison arrivals and exponential service infinite population model, Industrial applications of queuing theory.

6. **Simulation:** Concept and use of simulation, advantages and limitations of the simulation technique, generation of random numbers, Monte-Carlo simulation, computer-aided simulation: applications in maintenance and inventory management.

7. **PERT and CPM:** Work breakdown structure, network logic, critical path, CPM and PERT, slack and floats.

Suggested Books

1. **INTRODUCTION TO MACHINING PROCESSES:** Definition and classification of machining processes; Introduction to single point, multipoint and abrasive cutting tools. Introduction to different machining processes parameters in turning, drilling, boring, milling, shaping, planning and grinding operations.

2. **TOOL GEOMETRY:** Importance of tool geometry, geometry of single point cutting tool, milling cutters, drilling tools and broaching tools.

3. **MECHANICS OF METAL CUTTING:** Chip formation process, type of chips, orthogonal cutting, oblique cutting, Merchant Theory, calculations of shear angle, shear stress, shear strain, strain rate, kinetic coefficient of friction; velocity relations, calculation of various forces, Lee and Shaffer theory.

4. **TOOL WEAR AND TOOL LIFE:** Introduction, types of tool wear, wear mechanism, tool life, variables affecting the tool life, determination of tool life exponents, machinability, simple numerical problems.

5. **THERMAL ASPECTS OF MACHINING:** Introduction, equations of heat flow, temperature in orthogonal cutting, experimental determination of cutting temperatures, cutting fluids, their selection and application.

6. **MEASUREMENT OF CUTTING FORCES:** Introduction, need, and basic methods of measuring cutting forces, introduction to dynamometers, working principles and construction of lathe dynamometer, drilling dynamometer and milling dynamometers.

7. **ECONOMICS OF MACHINING:** Machining cost, optimum cutting speed, restrictions on cutting conditions, and comparison of the criteria.

BOOKS:

1. G.K. Lal, “Introduction to Machining Science, “New Age International Ltd,
3. A. Bhattacharya, “Metal cutting Principles”,CBS Publishers
4. R.K. Rajput, “Production Technology”, S Chand and company
5. P.C.Sharma, “Production Engineering” S Chand and company
1. LIMITS, FITS AND TOLERANCES
Concepts of interchangeability, need for standards system of limits, fits and tolerances. BIS:919:1963 standard system, selection of limits and fits, exercise on limits, fits and tolerances, design principles for limit gauges, Taylor's principles, types of limit gauges, tolerances on limit gauges. Design of limit gauges.

2. MEASURING AND GAUGING INSTRUMENTS
Mechanical linear and angle measuring instruments, verneir calipers, micrometers, dial gauges, bevel protectors, sine bars, spirit level, optical instruments autocollimator, tool room microscope. Comparators; principle, types of comparators, mechanical, optical, pneumatic, electrical comparators.

3. GEOMETRICAL METROLOGY AND SURFACE FINISH
Concepts of form errors; straightness, flatness, roundness errors and their measurements, concept of micro and macro errors, measurement of surface roughness, stylus method using, mechanical, optical, electrical magnification methods.

4. SCREW THREADS AND GEAR METROLOGY
Elements of screw threads metrology, measurement of major, minor and effective diameters of external and internal screw threads, measurement of pitch and screw thread angle, Elements of gear metrology, measurement of gear tooth thickness, gear profile, pitch and runout for involute gears, gear rolling test.

6. TRANSDUCERS
Transducers, types, governing principles of transducers; Examples. Displacement measurement, detailed study of various types of displacement transducers, Velocity measurement, linear and angular, study of velocity transducers.

7. FORCE, TORQUE AND PRESSURE MEASUREMENT.
Mechanical, pneumatic, and hydraulic load cells; torque measuring devices; dynamometers, types of strain gauges, factors affecting strain measurement; Electrical strain gauges, gauge material, fixing methods, strain gauge circuits, examples, use of strain gauges for the measurement of the force and torque, Pressure measurement, types of pressure transducer; differential pressure measuring devices, performance characteristics; low and high pressure Measurement.

Books recommended:
2. I.C.Gupta, “Engineering metrology”, Dhanpat rai & sons delhi
4. Doeblin, “Mechanical Measurement”, Mc graw Hill
5.Gharam T. smith, “Industrial Metrology” , Springer
1. Introduction: Classification of metal forming processes, hot and cold working processes and their advantages and disadvantages. Variables in metal forming process: Work material, tooling, friction and lubrication at tool work piece interface, mechanics of deformation, effects of deformation on mechanical and metallurgical properties, Tresca’s and Von Mises yield criteria.

2. Rolling: Rolling of flat slabs and strips, stress evaluation of roll pressure for homogenous deformation with constant yield stress, assumptions and their justifications, evaluation of load, torque and mill power for cold rolling process, stress evaluation for rolling with high friction. Friction hill, effect of elastic deformation, minimum thickness of strip in rolling, empirical equation for measurement of rolling loads for hot and cold rolling, rolling defects, causes and remedies.

3. Forging: Determination of forging pressure for thin strip for low and high friction conditions, pressure distribution for sticking and sliding friction regions, forging of flat circular discs.

4. Drawing and extrusion processes for rods, wires and tubes, evaluation of drawing stress and force for wire drawing and extrusion under homogenous deformation without and with strain hardening conditions through conical dies, effect of friction, maximum reduction per pass under frictionless condition, effects of back pull and die geometry, optimum die angle, drawing stress for tube drawing with a conical die with and without internal support, wire drawing and extrusion defects, causes & remedies.

5. Metal forming lubrication, Friction at die-work piece interface, lubrication mechanisms, boundary lubrication, mixed lubrication, hydrodynamic lubrication, lubricants for wire drawing, rolling, extrusion, forging and sheet metal working. Metal forming machines, classification and characteristics of metal forming machines, metal forming hammers and presses

Books

1. Row, “Principles Industrial metal working processes”, Prentice Hall of India
2. Surinder Kumar, “Metal working”, Dhanpat Rai and Sons
3. Avitzur, “Metal Forming”, Marcel Dekker
1. **Introduction:** Definition; importance of process planning for jigs, fixtures and tool design; selection and sequence of operations, machines, tools/die sets, gauges etc.; process planning sheet; case study.

2. **Jigs & Fixtures:** Definition; classification of jigs and fixtures; When a Jig or a Fixture is needed, Principles of economics of Jigs and Fixtures; design considerations for location, clamping and guiding devices; selection of Jigs / Fixtures. Design of Drill Jigs, Milling Fixtures, Lathe Fixtures, Assembly Fixtures, Welding fixtures, Inspection fixtures, Broaching Fixtures; Hydraulic, Pneumatic and Magnetic devices for clamping; Actual design problems.

3. **Press Tool Design:** Types of Presses and selection, Press accessories and attachments; Chutes, Magazines, Hoppers, Roll feeds, Dials. Automatic stops, hand feed and pin stops; Development of blanks and scrap strip layouts; Types of Die sets, Selection between Dies; Die materials; Design considerations for Dies, actual design problems of Blanking dies, Piercing dies, Combination dies, Progressive dies, Bending dies; Design considerations for Forming and Forging dies, Trimming dies.

Books
1. Edward G. Hoffman, “Jig and fixture Design”, Delmericengagelearning
4. Fred Herbert Colvin, Lucian Levant Haas, “Jigs and Fixtures”, BiblioBazaar
1. Prepare a HSS single point cutting tool of given tool signature.

2. By using lathe tool dynamometer measure the cutting forces in all directions and calculate the following:
 a) Shear plane angle
 b) Coefficient of friction
 c) Power consumption

3. By using the drill dynamometer measure the torque, and thrust in Drilling operation.

4. By using the tool work thermocouple, measure the tool chip interface temp

5. To determine chip reduction coefficient in turning.

6. To study the different mechanisms of tool wear and their measurements.

7. To determine Taylor Tool life exponents by Facing test

8. To study the effect of cutting variables on surface finish in any cutting (Turning, Drilling, Milling, Shaping, grinding etc) operation
1. Measure the surface roughness of the given workpiece on surface roughness measuring instrument.

2. Measure the taper angle in the given workpiece by using sine bar & slip gauges.

3. Measure the various gear tooth profile parameters.

4. Perform the machine tool alignment test on lathe and radial drilling machine.

5. To measure various elements of screw thread by (a) Tool Makers Microscope & (b) Profile Projector.

6. To check the flatness of surface plate by Auto-collimator.

7. To check the diameter of a rod by compactors and slip gauges.

8. Find out the strain in a given workpiece under given loading by using strain gauges. Calibration of pressure gauges.
1. To study the effect of clearance and shear angle on the blanking and piercing operations.

2. To determine the effect of percentage of reduction and the semi-cone angle of the die on the drawing load.

3. To find the effect of percentage of reduction and the die geometry on extruding force.

4. Experimental determination of coefficient of friction for metal forming.

5. Study of the drop forging operation (flowability, forging load etc by plasticine model.

6. To determine roll load in the sheet rolling process.
1. Students will be given at least one practical problem regarding design and fabrication of jig, fixture or press tool.

2. Working drawings of the following:-
 Drilling Jigs (Box type, Leaf type, Indexing type, Trunion type etc.).
3. Milling Fixtures
4. Grinding fixtures
5. Assembly and welding fixtures (for automobile components and frames etc.)
6. Drawing dies, bending dies, compound dies, and combination dies & progressive Dies.
INTRODUCTION: Definition and scope of industrial engineering, role of an industrial engineer in industry, functions of industrial engineer. Department and its organization, qualities of an industrial engineer

PLANT LAYOUT AND MATERIAL HANDLING: Different types of layouts viz. Product, Process and combination layouts, Introduction to layouts based on GT, JIT and Cellular, manufacturing systems, development of plant layout, types of material handling equipment, relationship of material handling with plant layouts.

WORK STUDY: Areas of applications of work study in industry, method study and work measurements and their interrelationship, reaction of management and labour to work study, role of work study in improving plant productivity and safety.

METHOD STUDY: Objectives and procedure for methods analysis; select, record, examine, develop, define, install and maintain, recording techniques, micro motion and macro motion Study; Principles of motion economy, normal work areas and workplace design.

WORK MEASUREMENT: Objectives, work measurement techniques - time study, work sampling, Predetermined motion time standards (PMTS), Determination of time standards, Observed time, Basic time, Normal Time, Rating Factors, allowances, Standard Time.

VALUE ENGINEERING: Types of values, concept of value engineering, phases of value engineering Studies, application of value engineering.

WORK DESIGN: Concepts of job enlargements, job enrichment and job rotation, effective job design considering technological and behavioral factors.

ERGONOMICS: Introduction to ergonomics consideration in designing Man Machine systems with special reference to design of displays and controls.

BOOKS:

4. R. Bernes, “Motion and time study”, John Wiley and sons.
6. Work study by ILO
1. **VISUAL DESIGN:** Basic elements and concept of visual design-line color, Balance proportion, Size shape mass, unity and variety, Special relationships and composition in two and three dimensions.

2. **FORM & COLOR** Elementary forms their characteristics and significance in design. Form transition, Form in relation to ergonomics, material and manufacturing process, color as an element of design, color clarification dynamics, interrelation of colors, colors and traditions; Psychological use of color form and material.

3. **PRODUCT GRAPHICS:** Meaning and objectives of product graphics. Basic principles of graphic design, Visual communication aspects of product graphics, Graphics of displays and control panels,

4. **PRODUCT DETAILING:** Standard fastening and joining details in different materials; Temporary and permanent joints: Detailing for plastic products, Detailing for fabricated products in sheet metal.

5. **PRODUCTS DEVELOPMENT:** Definition and objective, Role of designer in product development. Manufacturing and economic aspects of product development, Product promotions, product developments.

BOOK:

3. **Design of Drills**: Purpose and principal types of drills, twist drill geometry, construction and design.

4. **Design of Form Tool**: Purpose and types of form tools, radial feed and tangential type form tool construction and design.

5. **Design of milling cutters**: Purpose, types and geometry of milling cutters, Design of profile sharpened plain milling enter, face milling cuter, side milling cutters.

6. **Design of Broaches**: Purpose and types of broaches, Design and construction of internal broaches and external surface broaches.

7. **Design of Reamers**: Elementary discussion on various types of reamers, construction and geometry of reamers.

BOOKS

2. Arshinov & Others, “Metal Cutting Principles and cutting Tool Design and Production”, Mir Publications
3. Helmi A. Youssef, Hassan El-Hofy, “Machining Technology”, Taylor and francis Group
Detailed Syllabus:

1. **Modern Machining Processes**: An Overview, trends in advanced machining, classification, comparison between conventional and non-conventional machining process selection. Flexible machining system, computer integrated manufacturing.

2. **Advanced Mechanical Processes**: Ultrasonic machining and Abrasive Flow Machining, Abrasive Water Jet Machining- elements of process, process parameters, applications and limitations.

3. **Electrochemical and Chemical Removal Processes**: Principle of operation, elements and applications of Electrochemical Machining, Electrochemical grinding, Electrochemical deburring, Electrochemical honing, Chemical Machining:

5. **Hybrid Machining Processes**: concept, classification , application , Advantages

Books:

BTPE- 605 INDUSTRIAL ENGINEERING LAB

1. Determination of standard time for a given job using stopwatch time study.
2. Preparation of flow process chart, operation process chart and man-machine charts for an existing setup and development of an improved process.
3. Study of existing layout of a workstation with respect to controls and displays and suggesting improved design from ergonomic viewpoint.
4. To carryout a work sampling study in selected industry.
5. To conduct process capability study for a machine in the workshop.
6. To design a sampling scheme based on OC curve.
Design Exercise: Design and Develop a daily use product involving the product design fundamentals

1. Study the product design message of the commonly used product and use them to define the product message for selected product

2. Study the conceptualization process and implement it to the selected product in the design exercise.

3. Study the role of forms and shapes in product design and apply it to the selected product

4. Apply the principles of visual design forth detailed design of the selected product.

5. Develop the product detailing for the selected product

6. Study the economic aspects of the product development and develop/select the manufacturing process and material for the product considering cost as the major parameters.

7. Study the principles of graphic design and apply it to the product
INTRODUCTION: Overview of manufacturing processes, types of manufacturing systems, the product cycle, computer's role in manufacturing, sources and types of data used in manufacturing, Central Processing unit, memory input/output section, computer programming, mini computer, micro computer, P.C., Super Computers.

COMPUTER AIDED DESIGN: Historical Perspective, Components of CAD systems, the design process, Application of Computer for Design, Manufacturing Data Base. General Information of various Software for CAD, Relation of CAD with CAM

NUMERICAL CONTROL: THE BEGINNING OF CAM: Historical Background, basic components of NC systems, NC Procedure, NC coordinate system and machine motions, applications and economics of NC, part programming- manual and computer assisted the APT Language.

COMPUTER CONTROLS IN NC SYSTEMS: Problems with conventional NC computer numerical control, direct numerical control, combined CNC/ DNC systems, adaptive control machining system computer process interfacing, New development and latest trends.

COMPUTER AIDED PROCESS PLANNING: Traditional process planning, retrieval process planning system, generative process planning, machinibility data system, computer generated time standards.

GROUP TECHNOLOGY: Introduction, part families, part classification and coding, coding system and machining cells.

COMPUTER AIDED PRODUCTION MANAGEMENT SYSTEMS: Traditional Production, Planning and Control, Introduction to computer aided PPC, Introduction to computer aided inventory management, manufacturing resource planning (MRP- II), computer process monitoring and shop floor control, computer process control.

COMPUTER AIDED QUALITY CONTROL: Traditional quality control, computer in quality control, contact inspection methods, Non contact inspection methods, optical and non optical computer aided testing.

COMPUTER AIDED MATERIAL HANDLING: Traditional Material handling, computer control on material handling, conveying, picking. Ware house control, computerized material handling for automated inspection and assembly.

COMPUTER INTEGRATED MANUFACTURING SYSTEMS: Introduction, types special manufacturing systems, flexible manufacturing systems (FMS), Machine tools and equipment, material handling systems, computer control systems.

BOOKS:
BTPE-702 MACHINE TOOL DESIGN

<table>
<thead>
<tr>
<th>Internal Marks: 40</th>
<th>LTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Marks: 60</td>
<td>410</td>
</tr>
<tr>
<td>Total Marks: 100</td>
<td></td>
</tr>
</tbody>
</table>

1. **INTRODUCTION:** General requirements to machine tools, Machine tool design recommendations, Classification of motions to shape surface, Machine tool drives for rectilinear motion, Periodic motion, reversing motion etc.

2. **KINEMATICS OF MACHINE TOOLS:** Kinematics or gearing diagram of Lathe, drilling machine, milling machine etc. Main drive and feed drive, principal specification of machine tools.

3. **DESIGN OF KINEMATICS SCHEME:** Methods to determine transmission ratios for drives. Development of kinematics scheme, minimum of transmission, transmission groups, Determination of number of teeth on gears.

4. **SPEED AND FEED BOXES:** General requirement, Design of gear trains, types of speed boxes, speed changing devices, feed boxes, characteristics of feed mechanism, types of rapid traverse mechanisms, variable devices.

5. **SPINDLE DESIGN AND SPINDLE BEARINGS:** Main requirements, Materials and details of spindle design, spindle bearings, bearings, types of bearings and their selections, bearing materials.

6. **BED, COLUMNS, TABLES AND WAYS:** Materials, typical constructions and design.

7. **MACHINE TOOLS CONTROL SYSTEMS:** Requirement of control system, selection and construction of control systems, Mechanical control system, predilection control, remote control safety devices.

8. **MACHINE TOOL DYNAMICS:** Dynamic performance, dynamic and elastic system of Machine, tools. Dynamics of cutting forces, tool chatter.

BOOKS:
Detailed Contents

1. **Introduction**: Concept and scope of automation: Socio economic consideration: Low cost automation.

2. **Fluid Power Control**: Fluid power control elements and standard graphical symbols. Construction and performance of fluid power generators; Hydraulic and pneumatic cylinders - construction, design and mounting; Hydraulic and pneumatic valves for pressure, flow and direction control: Servo valves and simple servo systems with mechanical feedback, governing differential equation and its solution for step position input; Basic hydraulic and pneumatic circuits.

3. **Pneumatic Logic Circuits**: Design of pneumatic logic circuits for a given time displacement diagram or sequence of operations.

4. **Fluidics**: Boolean algebra; Truth tables; Conda effect; Fluidic elements - their construction working and performance characteristics: Elementary fluidic circuits.

5. **Transfer Devices and Feeders**: their Classification: Construction details and application of transfer devices and feeders (Vibratory bowl feeder, reciprocating tube feeder and centrifugal hopper feeder).

6. **Electrical and Electronic Controls**: Introduction to electrical and electronic controls such as electromagnetic controllers - transducers and sensors, microprocessors, programmable logic controllers (PLC); Integration of mechanical systems with electrical, electronic and computer systems.

7. **Robotics**: Introduction, classification based on geometry, devices, control and path movement, End effectors - types and applications: Sensors - types and applications. Concept of Robotic/Machine vision, Teach pendent.

8. **Industrial Applications** of Robots for material transfer, machine loading / unloading, welding, assembly and spray painting operations.

Books

3. SR Majumdar, “Pneumatic Control”, Tata McGral Hill
4. SR Deb,“Robotics and Flexible Automation”, Tata McGral Hill
5. Harry Colestock, “Industrial robotics: selection, design, and maintenance.”
1. Design and assembly of hydraulic / pneumatic circuit.

2. Study of power steering mechanism using cut piece model

3. Study of reciprocating movement of double acting cylinder using pneumatic direction control valves

4. Use of direction control valve and pressure control valves clamping devices for jig and fixture

5. Study of robotic arm and its configuration

6. Study the robotic end effectors

7. Study of different types of hydraulic and pneumatic valves
1. Construction of kinematics diagrams of the following machines (using tracing paper method / CAD software):
 a. Lathe Machine
 b. Drilling Machine
 c. Milling Machine

2. Construction of Gearing diagrams of the following machines:
 a. Lathe Machine
 b. Drilling Machine
 c. Milling Machine

3. Determination of number of teeth on gears using speed chart, ray diagram and gearing diagram.
1. Introduction
 - Concept and Understanding A-I, Representation of facts, Predicates and predicate expressions and types Semantics with and without multiple arguments., Variables and queries, Single and multidirectional queries matching alternatives, multi condition queries, negative predicate expressions, back tracking. The generate and test scheme.

2. Definitions and Inferences
 - Rules and fact orders, rules as programs, rules in natural language, rules; without right side, back tracking with rules, transitive and inheritance/inferences.

3. Arithmetic and lists in prolog
 - Comparisons, assignments reversing, lists creating and processing predicates combining list predicates.

4. Control structure for rules based systems

5. Abstraction of facts
 - Partitioning facts, frames and slots, frames with components, frames as forms, slot inheritance, past-kind inheritances, extension Vs. intentions, procedural attachment, frames in prolog, frames for natural language understanding.

BOOKS:
4. P.H.Winston,"Artificial intelligence",
1. FINAL FINISH SURFACE OPERATIONS
 Introduction to finishing operations, significance and applications in Industry, classification of Industrial finishing processes. Mechanical Finishing processes: Deburring, polishing, buffing, barrel and vibratory finishing, spindle finishing, dry and wet blasting, shot peening, power brushing, brush principles, techniques and compassion of the processes. Chemical and electrochemical finishing, chemical polishing. Cleaning, chemical, flame, steam, ultrasonic cleaning, vapor degreasing. Advanced Finishing operations: Magnetic Abrasive finishing, Magnetic Float polishing, Chemo-Mechanical Polishing

2. COATINGS:
 Inorganic methods, coating system, coating composition and properties, applications, electroplating, equipment and working, electrolytes, Anodizing mechanism, characteristic of anodic coating, equipment and electrolytes. Mechanical plating, hard facing, metal hot dipping, galvanizing, tin plating flame spray coating, metallizing, vacuum metalising, sputtering, chemical vapor phase deposition. Painting and organic coating, polymerization methods, undercoating, brush dip, flow, Electrolytic spraying. Rust prevention, principles, types selection of coatings, safety.

BOOKS;
3. Tool and Manufacturing Engineer's handbook, Society of Manufacturing Engineers
1. **Introduction:**
 Introduction to Welding technology, Classification of welding processes, Metallurgy of welding, metallurgical changes in weld metal, heat affected zone, gas metal reaction, liquid metal reaction and solid state reaction, weldability, Testing of welding joints, weld design and process selection, effects of elements on welding of ferrous and non-ferrous metal and their alloys

2. **Power Sources and metal transfer:** Basic characteristics of power sources for various arc welding processes, arc length regulation in mechanized welding processes, Mechanism and types of metal transfer in various arc-welding processes.

3. **Fusion Welding**
 Comparison of TIG, MIG and Co2 welding processes, Plasma arc, submerged arc welding, electro gas and Electroslag welding,

4. **Solid State Welding:**
 Classification of Solid State Welding processes, Mechanism of solid state welding. Applications of friction welding, diffusion welding, cold pressure welding and ultrasonic welding. High energy rate welding,

5. **Advanced Welding processes:**

BOOKS:
4. Welding Handbook Vol.16, 73. ASME.
5. The solid phase welding of metals by Tylecote; Edward Arnoli P Ltd.

2. Polymer processing techniques such as extrusion, compression and transfer moulding. Injection moulding, blow moulding, thermoforming, rotational moulding, calendaring, Bag moulding reaction moulding.

4. Design of moulds for thermo sets: Compression moulds, transfer moulds, injection moulds, runner and gate design, vents.

5. Design of moulded products, wall thickness, fillets and radii, ribs, under, cuts, drafts, holes, threads, inserts parting lines, surface treatment mould design for avoiding warpage.

7. Casting of acrylics, phenolics and epoxies, polyesters and nylons.

BOOKS:
5. Plastic Engg. Data Book, Glanill
DE/ME-1.5 NON-DESTRUCTIVE TESTING

Internal Marks: 40
External Marks: 60
Total Marks: 100

1. Introduction

Classification of techniques of material testing, Need and Significance of Non Destructive Testing methods, type of Non Destructive testing methods,

2. Radiographic Examination

Radiant energy and radiography, practical applications, X-ray and Gamma -ray equipment, effect of variables on radiographs, requirement of a good radiograph, interpretation of radiograph, safety precautions, Xeroradiography

3. Magnaflux methods

Basic principles, scope and applications, magnetic analysis of steel bars and tubing magnetization methods, equipment, inspection medium, preparation of surfaces Fluorescent Penetration inspection, Demagnetization

4. Electrical and ultrasonic Methods

Basic principles, flaw detection in rails and tubes (Sperry Detector), Ultrasonic testing surface roughness, moisture in wood, Detection of defects in ferrous and non ferrous metals, plastics, ceramics, measurement of thickness, hardness, stiffness, sonic material analyzer, proof tests, concrete test hammer

5. Photoelasticity

Concept and applications of Plane and circular polarization, Photostress, models,

Books

1. Introduction: Objective and characteristics of maintenance function; Organization of the maintenance system; Operating practices in maintenance. Maintenance record keeping.

2. Cost Aspect of Maintenance: Costs of machine breakdown; estimation of life cycle costs; Application of work measurement in maintenance; Manpower planning and training, Incentive payments for maintenance

3. Planning of Maintenance Activities: Evaluation of alternative maintenance policies breakdown, preventive and predictive maintenance; fault diagnosis and condition monitoring techniques; simulation of alternative practices; Development of preventive maintenance schedule; House keeping practices; total productive maintenance

4. Maintenance Engineering: Maintenance requirements of mechanical, electrical, process and service equipment; Safety aspect in maintenance; Aspect of lubrication; chemical control of corrosion; Computerized maintenance information systems

5. Reliability concept and definition, configuration of failure data, various terms used in failure data analysis in mathematical forms, component and system failures, uses of reliability concepts in design and maintenance of different systems.

6. Reliability and Availability of Engineering systems: Quantitative estimation of reliability of parts; Reliability of parallel and series elements; Accuracy and confidence of reliability estimation; Statistical estimation of reliability indices; Machine failure pattern; Breakdown time distribution

7. Reliability improvement; Reliability in design, reliability in engg, systems, systems with spares, reliability simulation, redundant and stand by systems, confidence levels, component improvement element, unit and standby redundancy optimization and reliability-cost trade off. Fault Tree Analysis: Introduction and importance, fault tree construction, reliability calculations from fault tree, tie set and cut set methods, event tree and numerical problems.

Books

2. Clifton, RH, “Principles of Planned Maintenance”, Arnold Lodon
4. A Kelly, “Maintenance planning control “, (Indian ED)
1. Introduction Tribological considerations; Nature of surfaces and their contact; Physicomechanical properties of surface layer; Geometrical properties of surfaces, methods of studying surfaces; Study of contact of smoothly and rough surfaces.

2. Friction and wear: Role of friction and laws of static friction, causes of friction, adhesion theory; Laws of rolling friction; Friction of metals and non-metals; Friction measurements.

3. Definition of wear, mechanism of wear, friction affecting wear, wear measurement; Wear of metals and non-metals.

4. Lubrication and lubricants: Introduction, dry friction; Boundary lubrication; classic hydrodynamics, hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants, Types of lubricants and their industrial uses; properties of liquid and grease lubricants; lubricant additives, general properties and selection.

5. Special Topics: Selection of bearing and lubricant; bearing maintenance, diagnostic maintenance of tribological components; lubrication systems; Filters and filtration.

BOOKS:
4. Rearing Systems, Principles and Practice, PT Barwll
5. Basic Lubrication Theory, A Cameron (Indian Edition)
1. INTRODUCTION TO FINANCE:

Evolution of finance objective of the firm. time value of money present values, internal rate of return or yield bond returns. The return from a stock investment, dividend discount models.

2. MARKET RISKS & RETURNS;
Efficient financial market security portfolios. multiple security portfolio analysis and selection, capital asset pricing model, expected returns for individual security.

3. FINANCIAL PLANNING;
Importance of financial steps factors, limitations, concept of capital; and it is management, fund flow and Cash flow analysis.

4. PROJECT IDENTIFICATION & EVALUATION: Search for a business idea, project identification project planning, project appraisal, project evaluation under risk. under uncertainly, analysis of non-financial aspects.

5. INVESTMENT ANALYSIS:
Introduction to investment analysis, discounted cash flow criteria for economic evaluation-ROL, payback, MAP equipment selection, risk analysis, break even point, capacity planning. portfolio selection and technological forecasting.

6. CAPITAL INVESTMENT;
Principles of capital investment. Methods of evaluation, Depreciation and other refinements in Cash flow information, inflation and capital budgeting, risks in capital budgeting required returns for companies and acquisitions.

BOOKS;
3. Harold Kerzner, “Project Management”, John wiley and sons
5. Geoffrey Hirt, Stanley Block, Somnath Basu", Investment Planning",
1. Issues and Application, concepts to technology; role and importance of technology management, Dimensions of technology management, technology management in India.

2. Technological Change:
 Nature of technological change, motivation for technological change. Invention and Innovation, Technology Life Cycle, technology monitoring.

3. Technology Forecasting:
 Objectives and approaches, methodology of technological forecasting Delphin technique, growth curves, morphological analysis, technological discontinuities Indian technology Vision 2020.

4. Technology Planning:
 Technology and Socio economic Planning, choice of technology, Process of technology generation, Integrating business and technology strategies, technology development approaches, Technology audit.

5. Organisation for technology management; technological change and manufacturing complexity risks in new technology projects, implementing technology.

6. Management of R & D:
 Corporate strategy, Selection of R & D projects, Managing R & D projects, Marketing of R & D.

7. Management of Innovation: Radical and cyclic innovative processes, technology strategy and innovation.

8. Technology Absorption and Diffusion:
 Technology dependence, concepts in technology absorption in technology absorption, management of technology absorption, technology absorption and adaptation scheme (TAAS), concepts of diffusion of technology, Prospective on diffusion, developing diffusion strategies.

10. Managing Process Technology: Continuous improvement technology integration, product and process technology techniques of improvement, economics of improvement.

11. Technology as Competitive Strategy: Competitive analysis, core competitive competencies, technology leadership, adoption of new technology, marketing of new technology. Case studies on technology management.

Books
1. Frederick Betz, “Strategic Technology management” , McGraw Hill
1. Marketing Management:
 Definition of Marketing & its Scope, marketing Vs Selling Consumer Vs Industrial Marketing, Marketing Mix, Strategic planning. Marketing Management concept, Marketing Research Process & Techniques of Marketing Research. Consumer Behavior Factor affecting Consumer Behavior and Buying Processes. Market Segmentation - Bases for Segmenting Consumer and Industrial Segments. Product Mix, Product life cycle and ;Marketing Strategies in various stages of PLC,

2. Pricing decisions
 Price Setting Procedure and various Methods of pricing. Nature of Marketing Channels in Consumer, Industrial and Service Sectors, Channel Design Decisions, Promotion Mix and Nature of each Promotional

3. Financial Management:

BOOKS
1. Philip Kotler, "Marketing, Management", Pearson prentice Hall
3. Ramaswamy & Namakumari, “Marketing Management”, Macmillan,
1. **Introduction**: Definition of Productivity, Productivity and performance, production, benefit cycle, Industrial productivity, scope of productivity management, factors affecting productivity, different approaches to productivity.

2. **Productivity Measurement**: Need of productivity measurement, productivity measurement approaches, total & partial productivity, productivity measurement models and their comparison, productivity measurement parameters, productivity measurement indices, work study and productivity.

3. **Productivity Planning**: Causes for productivity changes, productivity models, applications of different planning models, productivity planning executives and their responsibilities.

4. **Productivity Evaluation**: Productivity evaluation, productivity evaluation models, evaluation tree model, successive, time period models, applications of different evaluation models, role of evaluating executives and their responsibilities.

5. **Productivity Improvement**: Causes of poor productivity, remedies of poor productivity, methods to improve productivity, design of productivity improvement programmes.

6. **Dynamic Programming Of Productivity Problems**: Static and dynamic causes of lower productivity, optimization of productivity.

Books
1. NEED AND SCOPE OF OPERATION MANAGEMENT: Types of production systems and their characteristics, productivity definition, types and measurements

2. PRODUCT DESIGN AND DEVELOPMENT: Steps involved in product design and development, considerations of technical, ergonomic, aesthetic, economic, and time factors. Use of concurrent engineering in product design and development. Discussion of case studies. Feasibility and locational analysis.

3. PLANNING AND FORECASTING: Role of market survey and market research in pre-planning, long medium and short range forecasting, objective and techniques of forecasting, smoothing and revision of forecast.

4. PRODUCTION PLANNING: Production planning objective and functions, Bill of material, Capacity and manpower requirement planning, operation analysis and process planning, long range planning, aggregate planning; Objective, Strategies, graphical and mathematical techniques of aggregate planning, master production scheduling, MRP and MRPII Systems.

5. PRODUCTION CONTROL: Capacity control and priority control, production control functions; Routing, scheduling, dispatching, expediting and follow up. Techniques of production control in job shop production, batch production and mass production systems.

6. MATERIAL MANAGEMENT: Objectives, scope and functions of material management, planning, procurement, storing, ending and inventory control. Purpose of inventory, inventory cost, inventory control systems, Selective inventory control systems, Determination of EOQ, Lead time and reorder point. Methods of physical stock control.

7. QUALITY CONTROL: Meaning of quality and quality control, quality of design, quality of conformance and quality of performance, functions of quality control. Introduction to statistical quality control-control charts and sampling plans.

8. MANAGEMENT INFORMATION SYSTEMS: Introduction to MIS, Steps in designing MIS, Role of Computers in MIS.

9. MAINTENANCE SYSTEMS: Type of maintenance, objective of maintenance, Planned maintenance strategies, preventive maintenance, condition monitoring and total productive maintenance.

BOOKS:
4. Modern Production Management by Elwood Buffa
1. Quality and Total Quality Management; Excellence in manufacturing/service, factors of excellence, relevance of TQM.

2. Concept and definition of quality; total quality control (TQC) and Total Quality Management (TQM), salient features of TQC and TQM. Total Quality Management Models, benefits of TQM.

4. Customer: Satisfaction, data collection and complaint, redressal mechanism.

5. Planning Process: Policy development and implementation; plan formulation and implementation.

6. Process Management: Factors affecting process management, Quality function development (QFD), and quality assurance system.

7. Total Employees Involvement (TEI): Empowering employees: team building; quality circles; reward and Recognition; education and training, Suggestion schemes.

8. Problems solving Defining problem; Problem identification and solving process; QC tools.

11. Advanced techniques of TQM: Design of experiments: failure mode effect analysis: Taguchi methods

BOOKS:
1. sunder Raju, “Total Quality Management by”, Tata Mcgraw Hill
2. M.Zairi, “TQM for engineers”, Aditya Books
5. Dr. Susan Perry, “Total Quality Management”, St Lucie Press
1. Introduction
Meaning, definition, functions of materials management, Concept of integrated material management, Relationship of material management with other Organizational functions.

2. Material Planning & Budgeting:
Need for material planning, Factors affecting material planning, Techniques of material planning; Material classification, codification and standardization; Material budgeting - meaning and need, techniques of material budgeting.

3. Inventory Control:

4. Purchasing:
Purchasing principles, procedures and systems, Functions of purchasing, Make-or-buy decision, Vendor development and vendor rating. Factors affecting purchase decisions, Legal aspects of purchasing, Documentation and procedure for import.

5. Storage:
Functions and importance of store keeping, types of stores, store accounting and store verification, Legal aspects of store keeping, Management of surplus, scrap and obsolete items. Importance of material handling in store keeping, handling equipment.

Books
1. **INTRODUCTION:** Concept of a project, types of project, project life cycle phase, project development, project identification and selection, feasibility study.

2. **PROJECT MANAGEMENT:** functions, comparison with traditional management, forms for project management in industry and service sector.

3. **PROJECT PLANNING:** Work Breakdown structure, project execution planning, contract planning. Work planning and organization planning, matrix organization, task force organization and totally project based organization systems and procedure planning.

4. **PROJECT SCHEDULING:** Gantt Charts, Network Scheduling, PERT and CPM. Worked examples of PERT and CPM.

5. **PROJECT MONITORING:** Line of Balanced and Pace (Performance and Cost Evaluation) techniques.

6. **PROJECT CONTROL:** Project control process, performance analysis, internal and external project control, approaches to project control, control problems.

7. **HUMAN ASPECTS OF PROJECT MANAGEMENT:** Leadership in project management, the role of project manager, project team, motivation and group cohesiveness.

BOOKS:
4. Mike Field, Laurie S. Keller, “Project Management”,-thomsan Learning

3. **Training & Development**: Difference between training and Development; Principles of Training; Employee Development; Promotion-Merit v/s seniority Performance Appraisal, Career Development & Planning.

4. **Job analysis & Design**: Job Analysis: Job Description & Job Description, Job Specification.

5. **Job Satisfaction**: Job satisfaction and its importance; Motivation, Factors affecting motivation, introduction to Motivation Theory; Workers ' Participation, Quality of work life.

7. **Integration**: Human Relations and Industrial Relations; Difference between Human Relations and Industrial Relations, Factors required for good Human Relation Policy in Industry; Employee Employer relationship Causes and Effects of Industrial disputes; Employees Grievances & their Redressal, Administration of Discipline, Communication in organization, Absenteeism, Labour Turnover, Changing face of the Indian work force and their environment, Importance of collective Bargaining; Role of trader unions in maintaining cordial Industrial Relations.

Recommended Text Books:

Recommended Reference Books:
5. T.N. Bhagotiwal , “Economics of Labour and Industrial Relations”,Sahitya Bhawan Agra
PART A

1. SAMPLING THEORY
 Introduction: Normal sampling distributions; Sampling distribution of the means; sampling distribution of the differences of the means; sampling distributions of proportions.

2. TESTS OF SIGNIFICANCE
 t-distributions, chi square distributions, F-distributions.

3. REGRESSION AND CORRELATION
 Linear regression; correlation, multiple correlation & partial correlation

4. CONFIDENCE LIMITS
 Large samples, small samples, error bands in regression

PART B

5. NUMERICAL METHODS

BOOKS:
1. S.S.Sastry, “Introductory methods of numerical analysis”, Prentice Hall of India
1. **Quality**
 - Concept of Quality, Quality Function, Quality Traits, Quality Characteristics, Quality Management, Quality Principles, Quality Policy, Quality System, Quality Planning, Organizing for Quality, Quality of Design, Quality Circles, Total Quality Management

2. **Quality Costs**

3. **Inspection**
 - Definition of Inspection, Inspection Planning, Measurement Errors, Objectives of Inspection, Floor / Patrol Inspection, Centralized Inspection, Process Inspection, Final Inspection, Difference between Inspection & Quality Control.

4. **Quality Assurance**

5. **Quality Control**

6. **Quality Management System**

Recommended Books

4. Dr. K.C. Arora, “TQM & ISO 14000”, S.K. Kataria & Sons
1. **Introduction:** Objectives and functions of industrial packaging, different types of industrial packaging, economics of industrial packing.

2. **Materials For Industrial Packaging:** Characteristics of a good packaging material, comparison of materials for industrial packaging, factors affecting the selection of packaging materials, packaging materials for special requirements.

3. **Industrial Packaging Design:** Requirements of a good package design, design considerations for compatibility, separation, enclosure, retention, handling and transportation, package graphic design, package as a means of information & identification, ecological considerations in packaging design selection and use.

4. **Multiple Function Industrial Packaging:** Concept and objectives of multi purpose-packaging, design considerations, cost analysis of multiple functions industrial packaging, Containers, their types, materials, design factors.

5. **R&D For Industrial Packaging:** Cost reduction techniques, composite material design and development, bio-degradable packaging materials.

Books

4. Packaging Hand Book, Indian Institute of Packaging (India)
1. Introduction
 Characteristics of effective planning, historical background to network charts, where network charts can be used; the basic essentials; analysis and scheduling; controlling and introducing PERT & CPM into an organisation.

2. Elements of a Network
 Activities and events; conventions adopted in drawing networks; the graphical representation of events and activities; identification of activities; fundamental properties of events and activities; errors in logic;

3. Drawing the Network
 Drawing the network; interfacing; duration times; duration times under uncertainty; PERT, assigning duration times, numbering the events, listing the events and activities; drawing arrow diagrams.

4. Analyzing the Networks
 Calculating the total project time; isolation of the critical path- earliest and latest events, time; total float; free and independent float; negative float; use of different float.

5. Applications
 Application of PERT and CPM; calculation of the load; the problem of optimisation, smoothing the load; scheduling manual resource allocation.

6. NOP Networks
 Representation of logic in MOP; representation of time-milestone in MOP; analysis of a MOP network resource allocation; matrix method of expressing and analysis MOP diagrams.

7. Introduction to LOB Networks
 Where LOB be used; node times LOB chart; LOB life table control using LOB.

Books:
5. Management by Network Bhattacharya Institution of Engrs
1. Introduction to material science and engineering, classifications of engineering materials and introduction to environmental degradation of materials.

3. **Aqueous corrosion prevention**: Materials selection, control of environment, Protective coatings, Cathodic protection, Anodic protection and Design improvement.

4. **Oxidation**: Introduction, doping effect, internal and catastrophic oxidation, hot corrosion, protective coatings for high temperature applications, corrosion by liquid metal.

Books

2. Planning the layout - collecting of data for determining and diagramming - the flow of material, visualizing possible layout and evaluating alternative layouts. Storage, plant servicing and office layout. Line balancing - various operational research techniques for balancing of assembly lines fabrication lines balancing.

3. Safety Engg. - Safety in various shops, safety in critical storage area, storage explosive material, gases and inflammable liquids.

4. Importance of materials handling: Principles of material handling, analysis of material handling problem, operation and flow process charts, flow diagrams.

5. Material handling factors: Materials, containers frequency and duration, distance, speed, environment labour and equipment.

6. Factory planning and material handling: Plant location factory handling, the layout as key materials handling problem.

7. Production Control and materials handling: Types of Production Control, material control. Production planning, production scheduling, production dispatching ;and follow up as related to materials handling. Material Handling Equipment: Belt Carrier, chain and cable roller,

8. Screw vibrating and reciprocating, pneumatic tubes, load transferring, machines, air operated ;and hydraulic devices.

BOOKS:
5. Fred e. Meyers, “Material handling & plant layout”, Prentice Hall,

2. Planning: Adjustments in forecasting, planning for making and buying. Types of plans: mathematical planning techniques, quantity standards, frequency standards, financial aspects of planning, analysis of machine capacity, planning for labour.

3. Production Control:
Routing, definition, routing procedures including bill of materials, route file, routing for two or more items, standard route charts, recent techniques of routing. Progress reporting and expediting methods.

4. Scheduling:
Master schedule, departmental and shop schedule charts for scheduling. Gnatt Charts- loading and scheduling, Sched-U-Graph. Boards for scheduling.

5. Despatching:
Procedure, types, bulletin boards, plant departmental and shop bulletin boards, material requisition identifications tag. Move ticket, operation tickets, machine control boards. Inspection ticket, Time ticket, communication systems for despatching, follow up.

6. Inventory control:
Importance of inventory control, purchases & inventory control, factors which affect stocks, methods of inventory control. Budgetary and trend, stock taking, physical, perpetual and running inventories. Ordering quantity to order.

7. Store-Room Operations:
Location and layout of store-room bins, pans and boxes used for storing, books and documents used in storing, decentralized stores, inspections function of store.

8. Purchasing:
Planning for purchasing, procurement schedule, purchase requisition, calling tenders, comparative statements, placing order, receiving materials, inspection, entry and payment. Foreign purchases - Imports. Documents and books used in purchasing.

9. Computer Applications:
Application of computers in production planning and control activities. Material Requirement Planning (MRP), Manufacturing Resource Planning (MRP II).

Books:
1. F. G. Moore, “Production Management”, Richard D. Irwin
2. John F. Biegel, “Production controls”, Prentic Hall
5. Elwood Spencer Buffa, “Modern Production Management”, Wiley/Hamilton
1. Safety: Measuring and need for safety. Relationship of safety with plant design, equipment design and work environment. Industrial accidents, their nature, types and causes. Assessment of accident costs; prevention of accidents. Industrial hazards, Hazards identification techniques, accident investigation, reporting and analysis.

BOOKS:
1. , Rjossamo, “Air Pollution Control”, McGraw Hill.
4. DC Reamer; R, “Modern Safety & Health Technology”, Wiley.
1. CONCEPT OF ENTREPRENEURSHIP:
Entrepreneurship and small-scale industry, need for promotion of entrepreneurship, entrepreneurship development programmes (EDP), personality characteristics of entrepreneur.

2. IDENTIFICATION OF INVESTMENT OPPORTUNITIES
Governmental regulatory framework, industrial policy, industrial development and regulation act, regulation of foreign collaboration and investment, foreign exchange regulation act, incentives for export oriented units, incentives for units in industrially backward areas, incentives for small scale industry, government assistance to SSI, how to start and SSI, list of items reserved for SSI, Scouting for project ideas, preliminary screening, project identification for an existing company.

3. MARKET AND DEMAND ANALYSIS:
Information required for market and demand analysis, market survey, demand forecasting, uncertainties demand forecasting.

4. COST OF PROJECT AND MEANS OF FINANCING:
Cost of project, means of financing, planning the capital structure of a new company, term loan financial institutions, cost of production.

5. FINANCIAL MANAGEMENT:
Concept and definition of financial management types of capital, of finance, reserve and surplus, concepts and liabilities, profit and loss statement balance sheet, depreciation, methods of calculating depreciation break even analysis and

BOOKS:
1. A. Saxena, “Entrepreneurship”, Mayur Enterprises
2. Project Preparation, Appraisal Budgeting and Implementation, Prasanna chandra, TMH
3. Wojciech W Gasparski, “Entrepreneurship”, Transaction Published, New Brunswick
DE/PE- 3.7 MODELING AND SIMULATION

Internal Marks: 40 LTP External Marks: 60 Total Marks: 100

1. **Modeling**
 Need for system modeling, systems approach to modeling, open and feedback systems, combination of simple feedback systems, feedback time lag effects, feedback and managerial systems. Principle of analytical modeling, kinds of analytical methods, measures of effectiveness, cost analysis of large systems.

2. **Simulation**
 Monte Carlo simulation, generation of stochastic variates, continuous and discrete probability distributions, application of Monte Carlo methods for production systems, computer simulation models, Macro Dynamic models, examples from business and industry, design of management game, Simulation languages SIMULA, SIMSCRIPT, GPSS etc. Statistical output analysis.

3. Analog computer simulation; basic analog computer components and operations; amplitude and time scaling; solution of linear and non-linear partial differential equations, formulation of model for a dynamic system and its simulation on analog computer.

List of Recommended Books